Finite equipartitions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines finite equipartitions, the partitions whose parts all are the same size up to a
difference of 1
.
Main declarations #
finpartition.is_equipartition
: Predicate for afinpartition
to be an equipartition.
def
finpartition.is_equipartition
{α : Type u_1}
[decidable_eq α]
{s : finset α}
(P : finpartition s) :
Prop
An equipartition is a partition whose parts are all the same size, up to a difference of 1
.
Equations
theorem
set.subsingleton.is_equipartition
{α : Type u_1}
[decidable_eq α]
{s : finset α}
{P : finpartition s}
(h : ↑(P.parts).subsingleton) :
theorem
finpartition.is_equipartition.average_le_card_part
{α : Type u_1}
[decidable_eq α]
{s t : finset α}
{P : finpartition s}
(hP : P.is_equipartition)
(ht : t ∈ P.parts) :
theorem
finpartition.is_equipartition.card_part_le_average_add_one
{α : Type u_1}
[decidable_eq α]
{s t : finset α}
{P : finpartition s}
(hP : P.is_equipartition)
(ht : t ∈ P.parts) :
Discrete and indiscrete finpartition #
theorem
finpartition.indiscrete_is_equipartition
{α : Type u_1}
[decidable_eq α]
(s : finset α)
{hs : s ≠ ∅} :