Centralizers of magmas and monoids #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Main definitions #
submonoid.centralizer
: the centralizer of a subset of a monoidadd_submonoid.centralizer
: the centralizer of a subset of an additive monoid
We provide subgroup.centralizer
, add_subgroup.centralizer
in other files.
The centralizer of a subset of a monoid M
.
Equations
- submonoid.centralizer S = {carrier := S.centralizer (mul_one_class.to_has_mul M), mul_mem' := _, one_mem' := _}
The centralizer of a subset of an additive monoid.
Equations
- add_submonoid.centralizer S = {carrier := S.add_centralizer (add_zero_class.to_has_add M), add_mem' := _, zero_mem' := _}
@[simp, norm_cast]
@[simp, norm_cast]
@[protected, instance]
def
submonoid.decidable_mem_centralizer
{M : Type u_1}
{S : set M}
[monoid M]
(a : M)
[decidable (∀ (b : M), b ∈ S → b * a = a * b)] :
decidable (a ∈ submonoid.centralizer S)
Equations
- submonoid.decidable_mem_centralizer a = decidable_of_iff' (∀ (g : M), g ∈ S → g * a = a * g) submonoid.mem_centralizer_iff
@[protected, instance]
def
add_submonoid.decidable_mem_centralizer
{M : Type u_1}
{S : set M}
[add_monoid M]
(a : M)
[decidable (∀ (b : M), b ∈ S → b + a = a + b)] :
Equations
- add_submonoid.decidable_mem_centralizer a = decidable_of_iff' (∀ (g : M), g ∈ S → g + a = a + g) add_submonoid.mem_centralizer_iff
@[simp]
theorem
add_submonoid.centralizer_eq_top_iff_subset
{M : Type u_1}
[add_monoid M]
{s : set M} :
add_submonoid.centralizer s = ⊤ ↔ s ⊆ ↑(add_submonoid.center M)
@[simp]
theorem
submonoid.centralizer_eq_top_iff_subset
{M : Type u_1}
[monoid M]
{s : set M} :
submonoid.centralizer s = ⊤ ↔ s ⊆ ↑(submonoid.center M)
@[simp]
@[simp]