Congruence subgroups #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This defines congruence subgroups of SL(2, ℤ) such as Γ(N), Γ₀(N) and Γ₁(N) for N a
natural number.
It also contains basic results about congruence subgroups.
@[simp]
theorem
SL_reduction_mod_hom_val
(N : ℕ)
(γ : matrix.special_linear_group (fin 2) ℤ)
(i j : fin 2) :
↑(⇑(matrix.special_linear_group.map (int.cast_ring_hom (zmod N))) γ) i j = ↑(↑γ i j)
The full level N congruence subgroup of SL(2, ℤ) of matrices that reduce to the identity
modulo N.
Equations
theorem
Gamma_mem'
(N : ℕ)
(γ : matrix.special_linear_group (fin 2) ℤ) :
γ ∈ Gamma N ↔ ⇑(matrix.special_linear_group.map (int.cast_ring_hom (zmod N))) γ = 1
The congruence subgroup of SL(2, ℤ) of matrices whose lower left-hand entry reduces to zero
modulo N.
A congruence subgroup is a subgroup of SL(2, ℤ) which contains some Gamma N for some
(N : ℕ+).
theorem
is_congruence_subgroup_trans
(H K : subgroup (matrix.special_linear_group (fin 2) ℤ))
(h : H ≤ K)
(h2 : is_congruence_subgroup H) :
theorem
conj_cong_is_cong
(g : conj_act (matrix.special_linear_group (fin 2) ℤ))
(Γ : subgroup (matrix.special_linear_group (fin 2) ℤ))
(h : is_congruence_subgroup Γ) :
is_congruence_subgroup (g • Γ)