Lie algebras of associative algebras #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator.
Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file.
Main definitions #
lie_algebra.of_associative_algebra
lie_algebra.of_associative_algebra_hom
lie_module.to_endomorphism
lie_algebra.ad
linear_equiv.lie_conj
alg_equiv.to_lie_equiv
Tags #
lie algebra, ring commutator, adjoint action
The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative.
An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator.
Equations
- lie_ring.of_associative_ring = {to_add_comm_group := non_unital_non_assoc_ring.to_add_comm_group A (non_assoc_ring.to_non_unital_non_assoc_ring A), to_has_bracket := ring.has_bracket _inst_1, add_lie := _, lie_add := _, lie_self := _, leibniz_lie := _}
We can regard a module over an associative ring A
as a Lie ring module over A
with Lie
bracket equal to its ring commutator.
Note that this cannot be a global instance because it would create a diamond when M = A
,
specifically we can build two mathematically-different has_bracket A A
s:
@ring.has_bracket A _
which says⁅a, b⁆ = a * b - b * a
(@lie_ring_module.of_associative_module A _ A _ _).to_has_bracket
which says⁅a, b⁆ = a • b
(and thus⁅a, b⁆ = a * b
)
See note [reducible non-instances]
Equations
- lie_ring_module.of_associative_module = {to_has_bracket := {bracket := has_smul.smul smul_zero_class.to_has_smul}, add_lie := _, lie_add := _, leibniz_lie := _}
An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator.
Equations
- lie_algebra.of_associative_algebra = {to_module := algebra.to_module _inst_3, lie_smul := _}
A representation of an associative algebra A
is also a representation of A
, regarded as a
Lie algebra via the ring commutator.
See the comment at lie_ring_module.of_associative_module
for why the possibility M = A
means
this cannot be a global instance.
Equations
- lie_module.of_associative_module = {smul_lie := _, lie_smul := _}
The map of_associative_algebra
associating a Lie algebra to an associative algebra is
functorial.
Equations
- f.to_lie_hom = {to_linear_map := {to_fun := f.to_linear_map.to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module.
See also lie_module.to_module_hom
.
The adjoint action of a Lie algebra on itself.
Equations
- lie_algebra.ad R L = lie_module.to_endomorphism R L L
A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra.
Equations
- lie_subalgebra_of_subalgebra R A A' = {to_submodule := {carrier := (⇑subalgebra.to_submodule A').carrier, add_mem' := _, zero_mem' := _, smul_mem' := _}, lie_mem' := _}
A linear equivalence of two modules induces a Lie algebra equivalence of their endomorphisms.
An equivalence of associative algebras is an equivalence of associated Lie algebras.
Equations
- e.to_lie_equiv = {to_lie_hom := {to_linear_map := {to_fun := e.to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := e.to_linear_equiv.inv_fun, left_inv := _, right_inv := _}