Measurable functions in normed spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[protected, measurability]
theorem
continuous_linear_map.measurable
{π : Type u_2}
[normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
[measurable_space E]
[opens_measurable_space E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F]
[measurable_space F]
[borel_space F]
(L : E βL[π] F) :
theorem
continuous_linear_map.measurable_comp
{Ξ± : Type u_1}
[measurable_space Ξ±]
{π : Type u_2}
[normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
[measurable_space E]
[opens_measurable_space E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F]
[measurable_space F]
[borel_space F]
(L : E βL[π] F)
{Ο : Ξ± β E}
(Ο_meas : measurable Ο) :
measurable (Ξ» (a : Ξ±), βL (Ο a))
@[protected, instance]
def
continuous_linear_map.measurable_space
{π : Type u_2}
[nontrivially_normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F] :
measurable_space (E βL[π] F)
Equations
- continuous_linear_map.measurable_space = borel (E βL[π] F)
@[protected, instance]
def
continuous_linear_map.borel_space
{π : Type u_2}
[nontrivially_normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F] :
borel_space (E βL[π] F)
@[measurability]
theorem
continuous_linear_map.measurable_apply
{π : Type u_2}
[nontrivially_normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F]
[measurable_space F]
[borel_space F]
(x : E) :
measurable (Ξ» (f : E βL[π] F), βf x)
@[measurability]
theorem
continuous_linear_map.measurable_apply'
{π : Type u_2}
[nontrivially_normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F]
[measurable_space E]
[opens_measurable_space E]
[measurable_space F]
[borel_space F] :
measurable (Ξ» (x : E) (f : E βL[π] F), βf x)
@[measurability]
theorem
continuous_linear_map.measurable_coe
{π : Type u_2}
[nontrivially_normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F]
[measurable_space F]
[borel_space F] :
measurable (Ξ» (f : E βL[π] F) (x : E), βf x)
@[measurability]
theorem
measurable.apply_continuous_linear_map
{Ξ± : Type u_1}
[measurable_space Ξ±]
{π : Type u_2}
[nontrivially_normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
[measurable_space E]
[borel_space E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F]
{Ο : Ξ± β (F βL[π] E)}
(hΟ : measurable Ο)
(v : F) :
measurable (Ξ» (a : Ξ±), β(Ο a) v)
@[measurability]
theorem
ae_measurable.apply_continuous_linear_map
{Ξ± : Type u_1}
[measurable_space Ξ±]
{π : Type u_2}
[nontrivially_normed_field π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
[measurable_space E]
[borel_space E]
{F : Type u_4}
[normed_add_comm_group F]
[normed_space π F]
{Ο : Ξ± β (F βL[π] E)}
{ΞΌ : measure_theory.measure Ξ±}
(hΟ : ae_measurable Ο ΞΌ)
(v : F) :
ae_measurable (Ξ» (a : Ξ±), β(Ο a) v) ΞΌ
theorem
measurable_smul_const
{Ξ± : Type u_1}
[measurable_space Ξ±]
{π : Type u_2}
[nontrivially_normed_field π]
[complete_space π]
[measurable_space π]
[borel_space π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
[measurable_space E]
[borel_space E]
{f : Ξ± β π}
{c : E}
(hc : c β 0) :
measurable (Ξ» (x : Ξ±), f x β’ c) β measurable f
theorem
ae_measurable_smul_const
{Ξ± : Type u_1}
[measurable_space Ξ±]
{π : Type u_2}
[nontrivially_normed_field π]
[complete_space π]
[measurable_space π]
[borel_space π]
{E : Type u_3}
[normed_add_comm_group E]
[normed_space π E]
[measurable_space E]
[borel_space E]
{f : Ξ± β π}
{ΞΌ : measure_theory.measure Ξ±}
{c : E}
(hc : c β 0) :
ae_measurable (Ξ» (x : Ξ±), f x β’ c) ΞΌ β ae_measurable f ΞΌ