Poincaré disc #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define complex.unit_disc
to be the unit disc in the complex plane. We also
introduce some basic operations on this disc.
@[protected, instance]
Complex unit disc.
Equations
- complex.unit_disc = ↥(metric.ball 0 1)
Instances for complex.unit_disc
- complex.unit_disc.comm_semigroup
- complex.unit_disc.has_distrib_neg
- complex.unit_disc.has_coe
- complex.unit_disc.topological_space
- complex.unit_disc.semigroup_with_zero
- complex.unit_disc.inhabited
- complex.unit_disc.circle_action
- complex.unit_disc.is_scalar_tower_circle_circle
- complex.unit_disc.is_scalar_tower_circle
- complex.unit_disc.smul_comm_class_circle
- complex.unit_disc.smul_comm_class_circle'
- complex.unit_disc.closed_ball_action
- complex.unit_disc.is_scalar_tower_closed_ball_closed_ball
- complex.unit_disc.is_scalar_tower_closed_ball
- complex.unit_disc.smul_comm_class_closed_ball
- complex.unit_disc.smul_comm_class_closed_ball'
- complex.unit_disc.smul_comm_class_circle_closed_ball
- complex.unit_disc.smul_comm_class_closed_ball_circle
@[protected, instance]
@[protected, instance]
@[simp, norm_cast]
A constructor that assumes abs z < 1
instead of dist z 0 < 1
and returns an element
of 𝔻
instead of ↥metric.ball (0 : ℂ) 1
.
Equations
- complex.unit_disc.mk z hz = ⟨z, _⟩
@[simp]
theorem
complex.unit_disc.coe_mk
(z : ℂ)
(hz : ⇑complex.abs z < 1) :
↑(complex.unit_disc.mk z hz) = z
@[simp]
theorem
complex.unit_disc.mk_coe
(z : complex.unit_disc)
(hz : ⇑complex.abs ↑z < 1 := _) :
complex.unit_disc.mk ↑z hz = z
@[simp]
theorem
complex.unit_disc.mk_neg
(z : ℂ)
(hz : ⇑complex.abs (-z) < 1) :
complex.unit_disc.mk (-z) hz = -complex.unit_disc.mk z _
@[protected, instance]
Equations
- complex.unit_disc.semigroup_with_zero = {mul := comm_semigroup.mul complex.unit_disc.comm_semigroup, mul_assoc := _, zero := complex.unit_disc.mk 0 complex.unit_disc.semigroup_with_zero._proof_1, zero_mul := complex.unit_disc.semigroup_with_zero._proof_2, mul_zero := complex.unit_disc.semigroup_with_zero._proof_3}
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[simp, norm_cast]
theorem
complex.unit_disc.coe_smul_closed_ball
(z : ↥(metric.closed_ball 0 1))
(w : complex.unit_disc) :
Real part of a point of the unit disc.
Imaginary part of a point of the unit disc.
Conjugate point of the unit disc.
Equations
- z.conj = complex.unit_disc.mk (⇑(star_ring_end ℂ) ↑z) _
@[simp, norm_cast]
@[simp]