Structure of finite(ly generated) abelian groups #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
add_comm_group.equiv_free_prod_direct_sum_zmod
: Any finitely generated abelian group is the product of a power ofℤ
and a direct sum of somezmod (p i ^ e i)
for some prime powersp i ^ e i
.add_comm_group.equiv_direct_sum_zmod_of_fintype
: Any finite abelian group is a direct sum of somezmod (p i ^ e i)
for some prime powersp i ^ e i
.
theorem
module.finite_of_fg_torsion
(M : Type u)
[add_comm_group M]
[module ℤ M]
[module.finite ℤ M]
(hM : module.is_torsion ℤ M) :
finite M
theorem
add_comm_group.equiv_free_prod_direct_sum_zmod
(G : Type u)
[add_comm_group G]
[hG : add_group.fg G] :
Structure theorem of finitely generated abelian groups : Any finitely generated abelian
group is the product of a power of ℤ
and a direct sum of some zmod (p i ^ e i)
for some
prime powers p i ^ e i
.
theorem
add_comm_group.equiv_direct_sum_zmod_of_fintype
(G : Type u)
[add_comm_group G]
[finite G] :
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of
some zmod (p i ^ e i)
for some prime powers p i ^ e i
.
theorem
add_comm_group.finite_of_fg_torsion
(G : Type u)
[add_comm_group G]
[hG' : add_group.fg G]
(hG : add_monoid.is_torsion G) :
finite G
theorem
comm_group.finite_of_fg_torsion
(G : Type u)
[comm_group G]
[group.fg G]
(hG : monoid.is_torsion G) :
finite G