Structure of finite(ly generated) abelian groups #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
- add_comm_group.equiv_free_prod_direct_sum_zmod: Any finitely generated abelian group is the product of a power of- ℤand a direct sum of some- zmod (p i ^ e i)for some prime powers- p i ^ e i.
- add_comm_group.equiv_direct_sum_zmod_of_fintype: Any finite abelian group is a direct sum of some- zmod (p i ^ e i)for some prime powers- p i ^ e i.
    
theorem
module.finite_of_fg_torsion
    (M : Type u)
    [add_comm_group M]
    [module ℤ M]
    [module.finite ℤ M]
    (hM : module.is_torsion ℤ M) :
finite M
    
theorem
add_comm_group.equiv_free_prod_direct_sum_zmod
    (G : Type u)
    [add_comm_group G]
    [hG : add_group.fg G] :
Structure theorem of finitely generated abelian groups : Any finitely generated abelian
group is the product of a power of ℤ and a direct sum of some zmod (p i ^ e i) for some
prime powers p i ^ e i.
    
theorem
add_comm_group.equiv_direct_sum_zmod_of_fintype
    (G : Type u)
    [add_comm_group G]
    [finite G] :
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of
some zmod (p i ^ e i) for some prime powers p i ^ e i.
    
theorem
add_comm_group.finite_of_fg_torsion
    (G : Type u)
    [add_comm_group G]
    [hG' : add_group.fg G]
    (hG : add_monoid.is_torsion G) :
finite G
    
theorem
comm_group.finite_of_fg_torsion
    (G : Type u)
    [comm_group G]
    [group.fg G]
    (hG : monoid.is_torsion G) :
finite G