THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we prove that sheafification is compatible with functors which preserve the correct limits and colimits.
The isomorphism between the sheafification of P
composed with F
and
the sheafification of P ⋙ F
.
Use the lemmas whisker_right_to_sheafify_sheafify_comp_iso_hom
,
to_sheafify_comp_sheafify_comp_iso_inv
and sheafify_comp_iso_inv_eq_sheafify_lift
to reduce
the components of this isomorphisms to a state that can be handled using the universal property
of sheafification.
Equations
- J.sheafify_comp_iso F P = J.plus_comp_iso F (J.plus_obj P) ≪≫ (J.plus_functor E).map_iso (J.plus_comp_iso F P)
The isomorphism between the sheafification of P
composed with F
and
the sheafification of P ⋙ F
, functorially in F
.
Equations
- J.sheafification_whisker_left_iso P = J.plus_functor_whisker_left_iso (J.plus_obj P) ≪≫ category_theory.iso_whisker_right (J.plus_functor_whisker_left_iso P) (J.plus_functor E) ≪≫ ((category_theory.whiskering_left Cᵒᵖ D E).obj P).associator (J.plus_functor E) (J.plus_functor E)
The isomorphism between the sheafification of P
composed with F
and
the sheafification of P ⋙ F
, functorially in P
.
Equations
- J.sheafification_whisker_right_iso F = (J.plus_functor D).associator (J.plus_functor D) ((category_theory.whiskering_right Cᵒᵖ D E).obj F) ≪≫ category_theory.iso_whisker_left (J.plus_functor D) (J.plus_functor_whisker_right_iso F) ≪≫ (((J.plus_functor D).associator ((category_theory.whiskering_right Cᵒᵖ D E).obj F) (J.plus_functor E)).symm ≪≫ category_theory.iso_whisker_right (J.plus_functor_whisker_right_iso F) (J.plus_functor E)) ≪≫ ((category_theory.whiskering_right Cᵒᵖ D E).obj F).associator (J.plus_functor E) (J.plus_functor E)