Trivial Lie modules and Abelian Lie algebras #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
The action of a Lie algebra L
on a module M
is trivial if ⁅x, m⁆ = 0
for all x ∈ L
and
m ∈ M
. In the special case that M = L
with the adjoint action, triviality corresponds to the
concept of an Abelian Lie algebra.
In this file we define these concepts and provide some related definitions and results.
Main definitions #
lie_module.is_trivial
is_lie_abelian
commutative_ring_iff_abelian_lie_ring
lie_module.ker
lie_module.max_triv_submodule
lie_algebra.center
Tags #
lie algebra, abelian, commutative, center
A Lie (ring) module is trivial iff all brackets vanish.
Instances of this typeclass
A Lie algebra is Abelian iff it is trivial as a Lie module over itself.
The kernel of the action of a Lie algebra L
on a Lie module M
as a Lie ideal in L
.
Equations
- lie_module.ker R L M = (lie_module.to_endomorphism R L M).ker
The largest submodule of a Lie module M
on which the Lie algebra L
acts trivially.
Equations
Instances for ↥lie_module.max_triv_submodule
max_triv_submodule
is functorial.
Equations
- lie_module.max_triv_hom f = {to_linear_map := {to_fun := λ (m : ↥(lie_module.max_triv_submodule R L M)), ⟨⇑f ↑m, _⟩, map_add' := _, map_smul' := _}, map_lie' := _}
The maximal trivial submodules of Lie-equivalent Lie modules are Lie-equivalent.
Equations
- lie_module.max_triv_equiv e = {to_lie_module_hom := {to_linear_map := {to_fun := ⇑(lie_module.max_triv_hom ↑e), map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := ⇑(lie_module.max_triv_hom ↑(e.symm)), left_inv := _, right_inv := _}
A linear map between two Lie modules is a morphism of Lie modules iff the Lie algebra action on it is trivial.
The center of a Lie algebra is the set of elements that commute with everything. It can be viewed as the maximal trivial submodule of the Lie algebra as a Lie module over itself via the adjoint representation.