Minimal primes #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We provide various results concerning the minimal primes above an ideal
Main results #
ideal.minimal_primes
:I.minimal_primes
is the set of ideals that are minimal primes overI
.minimal_primes
:minimal_primes R
is the set of minimal primes ofR
.ideal.exists_minimal_primes_le
: Every prime ideal overI
contains a minimal prime overI
.ideal.radical_minimal_primes
: The minimal primes overI.radical
are precisely the minimal primes overI
.ideal.Inf_minimal_primes
: The intersection of minimal primes overI
isI.radical
.ideal.exists_minimal_primes_comap_eq
Ifp
is a minimal prime overf ⁻¹ I
, then it is the preimage of some minimal prime overI
.ideal.minimal_primes_eq_comap
: The minimal primes overI
are precisely the preimages of minimal primes ofR ⧸ I
.
minimal_primes R
is the set of minimal primes of R
.
This is defined as ideal.minimal_primes ⊥
.
Equations
@[simp]
@[simp]
theorem
ideal.exists_comap_eq_of_mem_minimal_primes_of_injective
{R : Type u_1}
{S : Type u_2}
[comm_ring R]
[comm_ring S]
{f : R →+* S}
(hf : function.injective ⇑f)
(p : ideal R)
(H : p ∈ minimal_primes R) :
theorem
ideal.exists_minimal_primes_comap_eq
{R : Type u_1}
{S : Type u_2}
[comm_ring R]
[comm_ring S]
{I : ideal S}
(f : R →+* S)
(p : ideal R)
(H : p ∈ (ideal.comap f I).minimal_primes) :
∃ (p' : ideal S) (H : p' ∈ I.minimal_primes), ideal.comap f p' = p
theorem
ideal.mimimal_primes_comap_of_surjective
{R : Type u_1}
{S : Type u_2}
[comm_ring R]
[comm_ring S]
{f : R →+* S}
(hf : function.surjective ⇑f)
{I J : ideal S}
(h : J ∈ I.minimal_primes) :
ideal.comap f J ∈ (ideal.comap f I).minimal_primes
theorem
ideal.comap_minimal_primes_eq_of_surjective
{R : Type u_1}
{S : Type u_2}
[comm_ring R]
[comm_ring S]
{f : R →+* S}
(hf : function.surjective ⇑f)
(I : ideal S) :
(ideal.comap f I).minimal_primes = ideal.comap f '' I.minimal_primes
theorem
ideal.minimal_primes_eq_comap
{R : Type u_1}
[comm_ring R]
{I : ideal R} :
I.minimal_primes = ideal.comap (ideal.quotient.mk I) '' minimal_primes (R ⧸ I)
theorem
ideal.minimal_primes_eq_subsingleton
{R : Type u_1}
[comm_ring R]
{I : ideal R}
(hI : I.is_primary) :
I.minimal_primes = {I.radical}
theorem
ideal.minimal_primes_eq_subsingleton_self
{R : Type u_1}
[comm_ring R]
{I : ideal R}
[I.is_prime] :
I.minimal_primes = {I}