Typeclass expressing 0 ≤ 1
. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[class]
- zero_le_one : 0 ≤ 1
Typeclass for expressing that the 0
of a type is less or equal to its 1
.
Instances of this typeclass
- linear_ordered_comm_monoid_with_zero.to_zero_le_one_class
- canonically_ordered_add_monoid.to_zero_le_one_class
- ordered_semiring.zero_le_one_class
- with_top.zero_le_one_class
- with_bot.zero_le_one_class
- ordinal.zero_le_one_class
- ereal.zero_le_one_class
- pgame.zero_le_one_class
- counterexample.Nxzmod_2.prod.zero_le_one_class
Instances of other typeclasses for zero_le_one_class
- zero_le_one_class.has_sizeof_inst
@[simp]
theorem
zero_le_one
{α : Type u_1}
[has_zero α]
[has_one α]
[has_le α]
[zero_le_one_class α] :
0 ≤ 1
zero_le_one
with the type argument implicit.
theorem
zero_le_one'
(α : Type u_1)
[has_zero α]
[has_one α]
[has_le α]
[zero_le_one_class α] :
0 ≤ 1
zero_le_one
with the type argument explicit.
@[simp]
theorem
zero_lt_one
{α : Type u_1}
[has_zero α]
[has_one α]
[partial_order α]
[zero_le_one_class α]
[ne_zero 1] :
0 < 1
See zero_lt_one'
for a version with the type explicit.
theorem
zero_lt_one'
(α : Type u_1)
[has_zero α]
[has_one α]
[partial_order α]
[zero_le_one_class α]
[ne_zero 1] :
0 < 1
See zero_lt_one
for a version with the type implicit.
theorem
one_pos
{α : Type u_1}
[has_zero α]
[has_one α]
[partial_order α]
[zero_le_one_class α]
[ne_zero 1] :
0 < 1
Alias of zero_lt_one
.