Lists of elements of fin n
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file develops some results on fin_range n
.
@[simp]
theorem
list.fin_range_succ_eq_map
(n : ℕ) :
list.fin_range n.succ = 0 :: list.map fin.succ (list.fin_range n)
theorem
list.of_fn_eq_pmap
{α : Type u_1}
{n : ℕ}
{f : fin n → α} :
list.of_fn f = list.pmap (λ (i : ℕ) (hi : i < n), f ⟨i, hi⟩) (list.range n) _
theorem
list.of_fn_eq_map
{α : Type u_1}
{n : ℕ}
{f : fin n → α} :
list.of_fn f = list.map f (list.fin_range n)
theorem
list.nodup_of_fn_of_injective
{α : Type u_1}
{n : ℕ}
{f : fin n → α}
(hf : function.injective f) :
(list.of_fn f).nodup
theorem
list.nodup_of_fn
{α : Type u_1}
{n : ℕ}
{f : fin n → α} :
(list.of_fn f).nodup ↔ function.injective f
theorem
equiv.perm.map_fin_range_perm
{n : ℕ}
(σ : equiv.perm (fin n)) :
list.map ⇑σ (list.fin_range n) ~ list.fin_range n
theorem
equiv.perm.of_fn_comp_perm
{n : ℕ}
{α : Type u}
(σ : equiv.perm (fin n))
(f : fin n → α) :
list.of_fn (f ∘ ⇑σ) ~ list.of_fn f
The list obtained from a permutation of a tuple f
is permutation equivalent to
the list obtained from f
.