mathlib3 documentation

measure_theory.function.conditional_expectation.condexp_L2

Conditional expectation in L2 #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file contains one step of the construction of the conditional expectation, which is completed in measure_theory.function.conditional_expectation.basic. See that file for a description of the full process.

We build the conditional expectation of an function, as an element of . This is the orthogonal projection on the subspace of almost everywhere m-measurable functions.

Main definitions #

Implementation notes #

Most of the results in this file are valid for a complete real normed space F. However, some lemmas also use 𝕜 : is_R_or_C:

noncomputable def measure_theory.condexp_L2 {α : Type u_1} {E : Type u_2} (𝕜 : Type u_7) [is_R_or_C 𝕜] [normed_add_comm_group E] [inner_product_space 𝕜 E] [complete_space E] {m m0 : measurable_space α} {μ : measure_theory.measure α} (hm : m m0) :

Conditional expectation of a function in L2 with respect to a sigma-algebra

Equations
theorem measure_theory.norm_condexp_L2_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group E] [inner_product_space 𝕜 E] [complete_space E] {m m0 : measurable_space α} {μ : measure_theory.measure α} (hm : m m0) (f : (measure_theory.Lp E 2 μ)) :
theorem measure_theory.norm_condexp_L2_coe_le {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group E] [inner_product_space 𝕜 E] [complete_space E] {m m0 : measurable_space α} {μ : measure_theory.measure α} (hm : m m0) (f : (measure_theory.Lp E 2 μ)) :
theorem measure_theory.condexp_L2_indicator_of_measurable {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group E] [inner_product_space 𝕜 E] [complete_space E] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} (hm : m m0) (hs : measurable_set s) (hμs : μ s ) (c : E) :
theorem measure_theory.integral_condexp_L2_eq_of_fin_meas_real {α : Type u_1} {𝕜 : Type u_7} [is_R_or_C 𝕜] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} (f : (measure_theory.Lp 𝕜 2 μ)) (hs : measurable_set s) (hμs : μ s ) :
(x : α) in s, ((measure_theory.condexp_L2 𝕜 hm) f) x μ = (x : α) in s, f x μ
theorem measure_theory.lintegral_nnnorm_condexp_L2_le {α : Type u_1} {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} (hs : measurable_set s) (hμs : μ s ) (f : (measure_theory.Lp 2 μ)) :
theorem measure_theory.condexp_L2_ae_eq_zero_of_ae_eq_zero {α : Type u_1} {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} (hs : measurable_set s) (hμs : μ s ) {f : (measure_theory.Lp 2 μ)} (hf : f =ᵐ[μ.restrict s] 0) :
theorem measure_theory.lintegral_nnnorm_condexp_L2_indicator_le_real {α : Type u_1} {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} {hm : m m0} (hs : measurable_set s) (hμs : μ s ) (ht : measurable_set t) (hμt : μ t ) :
theorem measure_theory.condexp_L2_const_inner {α : Type u_1} {E : Type u_2} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group E] [inner_product_space 𝕜 E] [complete_space E] {m m0 : measurable_space α} {μ : measure_theory.measure α} (hm : m m0) (f : (measure_theory.Lp E 2 μ)) (c : E) :

condexp_L2 commutes with taking inner products with constants. See the lemma condexp_L2_comp_continuous_linear_map for a more general result about commuting with continuous linear maps.

theorem measure_theory.integral_condexp_L2_eq {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group E'] [inner_product_space 𝕜 E'] [complete_space E'] [normed_space E'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} (hm : m m0) (f : (measure_theory.Lp E' 2 μ)) (hs : measurable_set s) (hμs : μ s ) :
(x : α) in s, ((measure_theory.condexp_L2 𝕜 hm) f) x μ = (x : α) in s, f x μ

condexp_L2 verifies the equality of integrals defining the conditional expectation.

theorem measure_theory.condexp_L2_comp_continuous_linear_map {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [is_R_or_C 𝕜] [normed_add_comm_group E'] [inner_product_space 𝕜 E'] [complete_space E'] [normed_space E'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {E'' : Type u_8} (𝕜' : Type u_9) [is_R_or_C 𝕜'] [normed_add_comm_group E''] [inner_product_space 𝕜' E''] [complete_space E''] [normed_space E''] (hm : m m0) (T : E' →L[] E'') (f : (measure_theory.Lp E' 2 μ)) :
theorem measure_theory.condexp_L2_indicator_ae_eq_smul {α : Type u_1} {E' : Type u_3} (𝕜 : Type u_7) [is_R_or_C 𝕜] [normed_add_comm_group E'] [inner_product_space 𝕜 E'] [complete_space E'] [normed_space E'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} (hm : m m0) (hs : measurable_set s) (hμs : μ s ) (x : E') :
theorem measure_theory.set_lintegral_nnnorm_condexp_L2_indicator_le {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group E'] [inner_product_space 𝕜 E'] [complete_space E'] [normed_space E'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} (hm : m m0) (hs : measurable_set s) (hμs : μ s ) (x : E') {t : set α} (ht : measurable_set t) (hμt : μ t ) :
theorem measure_theory.lintegral_nnnorm_condexp_L2_indicator_le {α : Type u_1} {E' : Type u_3} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group E'] [inner_product_space 𝕜 E'] [complete_space E'] [normed_space E'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} (hm : m m0) (hs : measurable_set s) (hμs : μ s ) (x : E') [measure_theory.sigma_finite (μ.trim hm)] :

If the measure μ.trim hm is sigma-finite, then the conditional expectation of a measurable set with finite measure is integrable.

noncomputable def measure_theory.condexp_ind_smul {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] (hm : m m0) (hs : measurable_set s) (hμs : μ s ) (x : G) :

Conditional expectation of the indicator of a measurable set with finite measure, in L2.

Equations
theorem measure_theory.condexp_ind_smul_add {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] {hm : m m0} (hs : measurable_set s) (hμs : μ s ) (x y : G) :
theorem measure_theory.condexp_ind_smul_smul {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] {hm : m m0} (hs : measurable_set s) (hμs : μ s ) (c : ) (x : G) :
theorem measure_theory.condexp_ind_smul_smul' {α : Type u_1} {F : Type u_4} {𝕜 : Type u_7} [is_R_or_C 𝕜] [normed_add_comm_group F] [normed_space 𝕜 F] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} [normed_space F] [smul_comm_class 𝕜 F] (hs : measurable_set s) (hμs : μ s ) (c : 𝕜) (x : F) :
theorem measure_theory.condexp_ind_smul_ae_eq_smul {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] (hm : m m0) (hs : measurable_set s) (hμs : μ s ) (x : G) :
theorem measure_theory.set_lintegral_nnnorm_condexp_ind_smul_le {α : Type u_1} {G : Type u_5} [normed_add_comm_group G] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} [normed_space G] (hm : m m0) (hs : measurable_set s) (hμs : μ s ) (x : G) {t : set α} (ht : measurable_set t) (hμt : μ t ) :

If the measure μ.trim hm is sigma-finite, then the conditional expectation of a measurable set with finite measure is integrable.

theorem measure_theory.set_integral_condexp_L2_indicator {α : Type u_1} {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} {hm : m m0} (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ) (hμt : μ t ) :
theorem measure_theory.set_integral_condexp_ind_smul {α : Type u_1} {G' : Type u_6} [normed_add_comm_group G'] [normed_space G'] [complete_space G'] {m m0 : measurable_space α} {μ : measure_theory.measure α} {s t : set α} {hm : m m0} (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ) (hμt : μ t ) (x : G') :
(a : α) in s, (measure_theory.condexp_ind_smul hm ht hμt x) a μ = (μ (t s)).to_real x
theorem measure_theory.condexp_ind_smul_nonneg {α : Type u_1} {m m0 : measurable_space α} {μ : measure_theory.measure α} {s : set α} {hm : m m0} {E : Type u_2} [normed_lattice_add_comm_group E] [normed_space E] [ordered_smul E] [measure_theory.sigma_finite (μ.trim hm)] (hs : measurable_set s) (hμs : μ s ) (x : E) (hx : 0 x) :