The Transfer Homomorphism #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we construct the transfer homomorphism.
Main definitions #
diff ϕ S T: The difference of two left transversalsSandTunder the homomorphismϕ.transfer ϕ: The transfer homomorphism induced byϕ.transfer_center_pow: The transfer homomorphismG →* center G.
Main results #
transfer_center_pow_apply: The transfer homomorphismG →* center Gis given byg ↦ g ^ (center G).index.ker_transfer_sylow_is_complement': Burnside's transfer (or normalp-complement) theorem: IfhP : N(P) ≤ C(P), then(transfer P hP).keris a normalp-complement.
The difference of two left transversals
The difference of two left transversals
Given ϕ : H →* A from H : subgroup G to a commutative group A,
the transfer homomorphism is transfer ϕ : G →* A.
Equations
- ϕ.transfer = let T : ↥(subgroup.left_transversals ↑H) := inhabited.default in {to_fun := λ (g : G), subgroup.left_transversals.diff ϕ T (g • T), map_one' := _, map_mul' := _}
Given ϕ : H →+ A from H : add_subgroup G to an additive commutative group A,
the transfer homomorphism is transfer ϕ : G →+ A.
Equations
- ϕ.transfer = let T : ↥(add_subgroup.left_transversals ↑H) := inhabited.default in {to_fun := λ (g : G), add_subgroup.left_transversals.diff ϕ T (g +ᵥ T), map_zero' := _, map_add' := _}
Explicit computation of the transfer homomorphism.
The transfer homomorphism G →* center G.
Equations
- monoid_hom.transfer_center_pow G = {to_fun := λ (g : G), ⟨g ^ (subgroup.center G).index, _⟩, map_one' := _, map_mul' := _}
The homomorphism G →* P in Burnside's transfer theorem.
Equations
- monoid_hom.transfer_sylow P hP = (monoid_hom.id ↥P).transfer
Auxillary lemma in order to state transfer_sylow_eq_pow.
Burnside's normal p-complement theorem: If N(P) ≤ C(P), then P has a normal complement.