Additional results about ordered Subtraction #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
theorem
le_mul_tsub
{R : Type u_1}
[distrib R]
[preorder R]
[has_sub R]
[has_ordered_sub R]
[covariant_class R R has_mul.mul has_le.le]
{a b c : R} :
theorem
le_tsub_mul
{R : Type u_1}
[comm_semiring R]
[preorder R]
[has_sub R]
[has_ordered_sub R]
[covariant_class R R has_mul.mul has_le.le]
{a b c : R} :
theorem
order_iso.map_tsub
{M : Type u_1}
{N : Type u_2}
[preorder M]
[has_add M]
[has_sub M]
[has_ordered_sub M]
[partial_order N]
[has_add N]
[has_sub N]
[has_ordered_sub N]
(e : M ≃o N)
(h_add : ∀ (a b : M), ⇑e (a + b) = ⇑e a + ⇑e b)
(a b : M) :
An order isomorphism between types with ordered subtraction preserves subtraction provided that it preserves addition.
Preorder #
theorem
add_monoid_hom.le_map_tsub
{α : Type u_1}
{β : Type u_2}
[preorder α]
[add_comm_monoid α]
[has_sub α]
[has_ordered_sub α]
[preorder β]
[add_comm_monoid β]
[has_sub β]
[has_ordered_sub β]
(f : α →+ β)
(hf : monotone ⇑f)
(a b : α) :