Products of associated, prime, and irreducible elements. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains some theorems relating definitions in algebra.associated
and products of multisets, finsets, and finsupps.
    
theorem
multiset.prod_primes_dvd
    {α : Type u_1}
    [cancel_comm_monoid_with_zero α]
    [Π (a : α), decidable_pred (associated a)]
    {s : multiset α}
    (n : α)
    (h : ∀ (a : α), a ∈ s → prime a)
    (div : ∀ (a : α), a ∈ s → a ∣ n)
    (uniq : ∀ (a : α), multiset.countp (associated a) s ≤ 1) :
    
theorem
associates.finset_prod_mk
    {α : Type u_1}
    {β : Type u_2}
    [comm_monoid α]
    {p : finset β}
    {f : β → α} :
p.prod (λ (i : β), associates.mk (f i)) = associates.mk (p.prod (λ (i : β), f i))
    
theorem
associates.rel_associated_iff_map_eq_map
    {α : Type u_1}
    [comm_monoid α]
    {p q : multiset α} :
    
theorem
associates.prod_le_prod
    {α : Type u_1}
    [comm_monoid α]
    {p q : multiset (associates α)}
    (h : p ≤ q) :
    
theorem
associates.exists_mem_multiset_le_of_prime
    {α : Type u_1}
    [cancel_comm_monoid_with_zero α]
    {s : multiset (associates α)}
    {p : associates α}
    (hp : prime p) :
    
theorem
multiset.prod_ne_zero_of_prime
    {α : Type u_1}
    [cancel_comm_monoid_with_zero α]
    [nontrivial α]
    (s : multiset α)
    (h : ∀ (x : α), x ∈ s → prime x) :