Order related properties of Lp spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Results #
Lp E p μ
is anordered_add_comm_group
whenE
is anormed_lattice_add_comm_group
.
TODO #
- move definitions of
Lp.pos_part
andLp.neg_part
to this file, and define them ashas_pos_part.pos
andhas_pos_part.neg
given by the lattice structure.
theorem
measure_theory.Lp.coe_fn_le
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
(f g : ↥(measure_theory.Lp E p μ)) :
theorem
measure_theory.Lp.coe_fn_nonneg
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
(f : ↥(measure_theory.Lp E p μ)) :
@[protected, instance]
def
measure_theory.Lp.has_le.le.covariant_class
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E] :
covariant_class ↥(measure_theory.Lp E p μ) ↥(measure_theory.Lp E p μ) has_add.add has_le.le
@[protected, instance]
def
measure_theory.Lp.ordered_add_comm_group
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E] :
Equations
- measure_theory.Lp.ordered_add_comm_group = {add := add_comm_group.add (measure_theory.Lp E p μ).to_add_comm_group, add_assoc := _, zero := add_comm_group.zero (measure_theory.Lp E p μ).to_add_comm_group, zero_add := _, add_zero := _, nsmul := add_comm_group.nsmul (measure_theory.Lp E p μ).to_add_comm_group, nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg (measure_theory.Lp E p μ).to_add_comm_group, sub := add_comm_group.sub (measure_theory.Lp E p μ).to_add_comm_group, sub_eq_add_neg := _, zsmul := add_comm_group.zsmul (measure_theory.Lp E p μ).to_add_comm_group, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, le := partial_order.le (subtype.partial_order (λ (x : α →ₘ[μ] E), x ∈ measure_theory.Lp E p μ)), lt := partial_order.lt (subtype.partial_order (λ (x : α →ₘ[μ] E), x ∈ measure_theory.Lp E p μ)), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
theorem
measure_theory.mem_ℒp.sup
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
{f g : α → E}
(hf : measure_theory.mem_ℒp f p μ)
(hg : measure_theory.mem_ℒp g p μ) :
measure_theory.mem_ℒp (f ⊔ g) p μ
theorem
measure_theory.mem_ℒp.inf
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
{f g : α → E}
(hf : measure_theory.mem_ℒp f p μ)
(hg : measure_theory.mem_ℒp g p μ) :
measure_theory.mem_ℒp (f ⊓ g) p μ
theorem
measure_theory.mem_ℒp.abs
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
{f : α → E}
(hf : measure_theory.mem_ℒp f p μ) :
measure_theory.mem_ℒp |f| p μ
@[protected, instance]
def
measure_theory.Lp.lattice
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E] :
lattice ↥(measure_theory.Lp E p μ)
Equations
- measure_theory.Lp.lattice = subtype.lattice measure_theory.Lp.lattice._proof_3 measure_theory.Lp.lattice._proof_4
theorem
measure_theory.Lp.coe_fn_sup
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
(f g : ↥(measure_theory.Lp E p μ)) :
theorem
measure_theory.Lp.coe_fn_inf
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
(f g : ↥(measure_theory.Lp E p μ)) :
theorem
measure_theory.Lp.coe_fn_abs
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
(f : ↥(measure_theory.Lp E p μ)) :
@[protected, instance]
noncomputable
def
measure_theory.Lp.normed_lattice_add_comm_group
{α : Type u_1}
{E : Type u_2}
{m : measurable_space α}
{μ : measure_theory.measure α}
{p : ennreal}
[normed_lattice_add_comm_group E]
[fact (1 ≤ p)] :
Equations
- measure_theory.Lp.normed_lattice_add_comm_group = {to_normed_add_comm_group := {to_has_norm := normed_add_comm_group.to_has_norm measure_theory.Lp.normed_add_comm_group, to_add_comm_group := normed_add_comm_group.to_add_comm_group measure_theory.Lp.normed_add_comm_group, to_metric_space := normed_add_comm_group.to_metric_space measure_theory.Lp.normed_add_comm_group, dist_eq := _}, to_lattice := {sup := lattice.sup measure_theory.Lp.lattice, le := lattice.le measure_theory.Lp.lattice, lt := lattice.lt measure_theory.Lp.lattice, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := lattice.inf measure_theory.Lp.lattice, inf_le_left := _, inf_le_right := _, le_inf := _}, to_has_solid_norm := _, add_le_add_left := _}