@[protected]
The relation stating that two functions are pointwise equal.
Equations
- function.equiv f₁ f₂ = ∀ (x : α), f₁ x = f₂ x
@[protected]
@[protected]
theorem
function.equiv.symm
{α : Sort u}
{β : α → Sort v}
{f₁ f₂ : Π (x : α), β x} :
function.equiv f₁ f₂ → function.equiv f₂ f₁
@[protected]
theorem
function.equiv.trans
{α : Sort u}
{β : α → Sort v}
{f₁ f₂ f₃ : Π (x : α), β x} :
function.equiv f₁ f₂ → function.equiv f₂ f₃ → function.equiv f₁ f₃
@[protected]
The setoid generated by pointwise equality.
Equations
- function.fun_setoid α β = {r := function.equiv β, iseqv := _}
The quotient of the function type by pointwise equality.
Equations
- function.extfun α β = quotient (function.fun_setoid α β)
The map from functions into the qquotient by pointwise equality.
Equations
From an element of extfun
we can retrieve an actual function.
Equations
- function.extfun_app f = λ (x : α), quot.lift_on f (λ (f : Π (x : α), β x), f x) _
@[protected, instance]
def
pi.subsingleton
{α : Sort u}
{β : α → Sort v}
[∀ (a : α), subsingleton (β a)] :
subsingleton (Π (a : α), β a)