mathlib3 documentation

ring_theory.rees_algebra

Rees algebra #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

The Rees algebra of an ideal I is the subalgebra R[It] of R[t] defined as R[It] = ⨁ₙ Iⁿ tⁿ. This is used to prove the Artin-Rees lemma, and will potentially enable us to calculate some blowup in the future.

Main definition #

def rees_algebra {R : Type u} [comm_ring R] (I : ideal R) :

The Rees algebra of an ideal I, defined as the subalgebra of R[X] whose i-th coefficient falls in I ^ i.

Equations
Instances for rees_algebra
theorem mem_rees_algebra_iff {R : Type u} [comm_ring R] (I : ideal R) (f : polynomial R) :
f rees_algebra I (i : ), f.coeff i I ^ i
theorem mem_rees_algebra_iff_support {R : Type u} [comm_ring R] (I : ideal R) (f : polynomial R) :
f rees_algebra I (i : ), i f.support f.coeff i I ^ i
theorem rees_algebra.monomial_mem {R : Type u} [comm_ring R] {I : ideal R} {i : } {r : R} :
theorem rees_algebra.fg {R : Type u} [comm_ring R] {I : ideal R} (hI : I.fg) :