Category of linear orders #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This defines LinOrd
, the category of linear orders with monotone maps.
The category of linear orders.
Equations
@[protected, instance]
Equations
- LinOrd.linear_order.to_partial_order.category_theory.bundled_hom.parent_projection = category_theory.bundled_hom.parent_projection.mk
@[protected, instance]
@[protected, instance]
Construct a bundled LinOrd
from the underlying type and typeclass.
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
- α.linear_order = α.str
@[protected, instance]
Equations
Constructs an equivalence between linear orders from an order isomorphism between them.
Equations
- LinOrd.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
order_dual
as a functor.
The equivalence between LinOrd
and itself induced by order_dual
both ways.
Equations
- LinOrd.dual_equiv = category_theory.equivalence.mk LinOrd.dual LinOrd.dual (category_theory.nat_iso.of_components (λ (X : LinOrd), LinOrd.iso.mk (order_iso.dual_dual ↥X)) LinOrd.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : LinOrd), LinOrd.iso.mk (order_iso.dual_dual ↥X)) LinOrd.dual_equiv._proof_2)