probability.process.filtrationMathlib.Probability.Process.Filtration

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -142,7 +142,7 @@ instance : SupSet (Filtration ι m) :=
     { seq := fun i => sSup ((fun f : Filtration ι m => f i) '' s)
       mono' := fun i j hij => by
         refine' sSup_le fun m' hm' => _
-        rw [Set.mem_image] at hm' 
+        rw [Set.mem_image] at hm'
         obtain ⟨f, hf_mem, hfm'⟩ := hm'
         rw [← hfm']
         refine' (f.mono hij).trans _
@@ -150,7 +150,7 @@ instance : SupSet (Filtration ι m) :=
         exact le_sSup hfj_mem
       le' := fun i => by
         refine' sSup_le fun m' hm' => _
-        rw [Set.mem_image] at hm' 
+        rw [Set.mem_image] at hm'
         obtain ⟨f, hf_mem, hfm'⟩ := hm'
         rw [← hfm']
         exact f.le i }⟩
@@ -348,8 +348,8 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
     refine' generate_from_le _
     rintro t ⟨hn, u, hu, hu'⟩
     obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
-    pick_goal 4; rw [Set.mem_singleton_iff] at heq 
-    all_goals rw [HEq] at hu' ; rw [← hu']
+    pick_goal 4; rw [Set.mem_singleton_iff] at heq
+    all_goals rw [HEq] at hu'; rw [← hu']
     exacts [measurable_set_empty _, MeasurableSet.univ, measurable_set_generate_from ⟨n, hn, rfl⟩,
       MeasurableSet.compl (measurable_set_generate_from ⟨n, hn, rfl⟩)]
 #align measure_theory.filtration.filtration_of_set_eq_natural MeasureTheory.Filtration.filtrationOfSet_eq_natural
Diff
@@ -167,7 +167,7 @@ noncomputable instance : InfSet (Filtration ι m) :=
     { seq := fun i => if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m
       mono' := fun i j hij => by
         by_cases h_nonempty : Set.Nonempty s
-        swap; · simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl]
+        swap; · simp only [h_nonempty, Set.image_nonempty, if_false, le_refl]
         simp only [h_nonempty, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
           forall_apply_eq_imp_iff₂]
         refine' fun f hf_mem => le_trans _ (f.mono hij)
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Kexing Ying. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying, Rémy Degenne
 -/
-import Mathbin.MeasureTheory.Function.ConditionalExpectation.Real
+import MeasureTheory.Function.ConditionalExpectation.Real
 
 #align_import probability.process.filtration from "leanprover-community/mathlib"@"e160cefedc932ce41c7049bf0c4b0f061d06216e"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Kexing Ying. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying, Rémy Degenne
-
-! This file was ported from Lean 3 source module probability.process.filtration
-! leanprover-community/mathlib commit e160cefedc932ce41c7049bf0c4b0f061d06216e
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Function.ConditionalExpectation.Real
 
+#align_import probability.process.filtration from "leanprover-community/mathlib"@"e160cefedc932ce41c7049bf0c4b0f061d06216e"
+
 /-!
 # Filtrations
 
Diff
@@ -291,11 +291,11 @@ theorem measurableSet_filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, measurab
 #align measure_theory.measurable_set_filtration_of_set MeasureTheory.measurableSet_filtrationOfSet
 -/
 
-#print MeasureTheory.measurableSet_filtration_of_set' /-
-theorem measurableSet_filtration_of_set' {s : ι → Set Ω} (hsm : ∀ n, measurable_set[m] (s n))
+#print MeasureTheory.measurableSet_filtrationOfSet' /-
+theorem measurableSet_filtrationOfSet' {s : ι → Set Ω} (hsm : ∀ n, measurable_set[m] (s n))
     (i : ι) : measurable_set[filtrationOfSet hsm i] (s i) :=
   measurableSet_filtrationOfSet hsm i le_rfl
-#align measure_theory.measurable_set_filtration_of_set' MeasureTheory.measurableSet_filtration_of_set'
+#align measure_theory.measurable_set_filtration_of_set' MeasureTheory.measurableSet_filtrationOfSet'
 -/
 
 end OfSet
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying, Rémy Degenne
 
 ! This file was ported from Lean 3 source module probability.process.filtration
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit e160cefedc932ce41c7049bf0c4b0f061d06216e
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.MeasureTheory.Function.ConditionalExpectation.Real
 /-!
 # Filtrations
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file defines filtrations of a measurable space and σ-finite filtrations.
 
 ## Main definitions
Diff
@@ -41,6 +41,7 @@ open scoped Classical MeasureTheory NNReal ENNReal Topology BigOperators
 
 namespace MeasureTheory
 
+#print MeasureTheory.Filtration /-
 /-- A `filtration` on a measurable space `Ω` with σ-algebra `m` is a monotone
 sequence of sub-σ-algebras of `m`. -/
 structure Filtration {Ω : Type _} (ι : Type _) [Preorder ι] (m : MeasurableSpace Ω) where
@@ -48,6 +49,7 @@ structure Filtration {Ω : Type _} (ι : Type _) [Preorder ι] (m : MeasurableSp
   mono' : Monotone seq
   le' : ∀ i : ι, seq i ≤ m
 #align measure_theory.filtration MeasureTheory.Filtration
+-/
 
 variable {Ω β ι : Type _} {m : MeasurableSpace Ω}
 
@@ -58,32 +60,42 @@ namespace Filtration
 
 variable [Preorder ι]
 
+#print MeasureTheory.Filtration.mono /-
 protected theorem mono {i j : ι} (f : Filtration ι m) (hij : i ≤ j) : f i ≤ f j :=
   f.mono' hij
 #align measure_theory.filtration.mono MeasureTheory.Filtration.mono
+-/
 
+#print MeasureTheory.Filtration.le /-
 protected theorem le (f : Filtration ι m) (i : ι) : f i ≤ m :=
   f.le' i
 #align measure_theory.filtration.le MeasureTheory.Filtration.le
+-/
 
+#print MeasureTheory.Filtration.ext /-
 @[ext]
 protected theorem ext {f g : Filtration ι m} (h : (f : ι → MeasurableSpace Ω) = g) : f = g := by
   cases f; cases g; simp only; exact h
 #align measure_theory.filtration.ext MeasureTheory.Filtration.ext
+-/
 
 variable (ι)
 
+#print MeasureTheory.Filtration.const /-
 /-- The constant filtration which is equal to `m` for all `i : ι`. -/
 def const (m' : MeasurableSpace Ω) (hm' : m' ≤ m) : Filtration ι m :=
   ⟨fun _ => m', monotone_const, fun _ => hm'⟩
 #align measure_theory.filtration.const MeasureTheory.Filtration.const
+-/
 
 variable {ι}
 
+#print MeasureTheory.Filtration.const_apply /-
 @[simp]
 theorem const_apply {m' : MeasurableSpace Ω} {hm' : m' ≤ m} (i : ι) : const ι m' hm' i = m' :=
   rfl
 #align measure_theory.filtration.const_apply MeasureTheory.Filtration.const_apply
+-/
 
 instance : Inhabited (Filtration ι m) :=
   ⟨const ι m le_rfl⟩
@@ -104,10 +116,12 @@ instance : Sup (Filtration ι m) :=
         sup_le ((f.mono hij).trans le_sup_left) ((g.mono hij).trans le_sup_right)
       le' := fun i => sup_le (f.le i) (g.le i) }⟩
 
+#print MeasureTheory.Filtration.coeFn_sup /-
 @[norm_cast]
 theorem coeFn_sup {f g : Filtration ι m} : ⇑(f ⊔ g) = f ⊔ g :=
   rfl
 #align measure_theory.filtration.coe_fn_sup MeasureTheory.Filtration.coeFn_sup
+-/
 
 instance : Inf (Filtration ι m) :=
   ⟨fun f g =>
@@ -116,10 +130,12 @@ instance : Inf (Filtration ι m) :=
         le_inf (inf_le_left.trans (f.mono hij)) (inf_le_right.trans (g.mono hij))
       le' := fun i => inf_le_left.trans (f.le i) }⟩
 
+#print MeasureTheory.Filtration.coeFn_inf /-
 @[norm_cast]
 theorem coeFn_inf {f g : Filtration ι m} : ⇑(f ⊓ g) = f ⊓ g :=
   rfl
 #align measure_theory.filtration.coe_fn_inf MeasureTheory.Filtration.coeFn_inf
+-/
 
 instance : SupSet (Filtration ι m) :=
   ⟨fun s =>
@@ -139,10 +155,12 @@ instance : SupSet (Filtration ι m) :=
         rw [← hfm']
         exact f.le i }⟩
 
+#print MeasureTheory.Filtration.sSup_def /-
 theorem sSup_def (s : Set (Filtration ι m)) (i : ι) :
     sSup s i = sSup ((fun f : Filtration ι m => f i) '' s) :=
   rfl
 #align measure_theory.filtration.Sup_def MeasureTheory.Filtration.sSup_def
+-/
 
 noncomputable instance : InfSet (Filtration ι m) :=
   ⟨fun s =>
@@ -162,10 +180,12 @@ noncomputable instance : InfSet (Filtration ι m) :=
         obtain ⟨f, hf_mem⟩ := h_nonempty
         exact le_trans (sInf_le ⟨f, hf_mem, rfl⟩) (f.le i) }⟩
 
+#print MeasureTheory.Filtration.sInf_def /-
 theorem sInf_def (s : Set (Filtration ι m)) (i : ι) :
     sInf s i = if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m :=
   rfl
 #align measure_theory.filtration.Inf_def MeasureTheory.Filtration.sInf_def
+-/
 
 noncomputable instance : CompleteLattice (Filtration ι m)
     where
@@ -206,28 +226,37 @@ noncomputable instance : CompleteLattice (Filtration ι m)
 
 end Filtration
 
+#print MeasureTheory.measurableSet_of_filtration /-
 theorem measurableSet_of_filtration [Preorder ι] {f : Filtration ι m} {s : Set Ω} {i : ι}
     (hs : measurable_set[f i] s) : measurable_set[m] s :=
   f.le i s hs
 #align measure_theory.measurable_set_of_filtration MeasureTheory.measurableSet_of_filtration
+-/
 
+#print MeasureTheory.SigmaFiniteFiltration /-
 /-- A measure is σ-finite with respect to filtration if it is σ-finite with respect
 to all the sub-σ-algebra of the filtration. -/
 class SigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) : Prop where
   SigmaFinite : ∀ i : ι, SigmaFinite (μ.trim (f.le i))
 #align measure_theory.sigma_finite_filtration MeasureTheory.SigmaFiniteFiltration
+-/
 
+#print MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration /-
 instance sigmaFinite_of_sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m)
     [hf : SigmaFiniteFiltration μ f] (i : ι) : SigmaFinite (μ.trim (f.le i)) := by
   apply hf.sigma_finite
 #align measure_theory.sigma_finite_of_sigma_finite_filtration MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration
+-/
 
+#print MeasureTheory.IsFiniteMeasure.sigmaFiniteFiltration /-
 -- can't exact here
 instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
     (f : Filtration ι m) [IsFiniteMeasure μ] : SigmaFiniteFiltration μ f :=
   ⟨fun n => by infer_instance⟩
 #align measure_theory.is_finite_measure.sigma_finite_filtration MeasureTheory.IsFiniteMeasure.sigmaFiniteFiltration
+-/
 
+#print MeasureTheory.Integrable.uniformIntegrable_condexp_filtration /-
 /-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
 filtration is uniformly integrable. -/
 theorem Integrable.uniformIntegrable_condexp_filtration [Preorder ι] {μ : Measure Ω}
@@ -235,11 +264,13 @@ theorem Integrable.uniformIntegrable_condexp_filtration [Preorder ι] {μ : Meas
     UniformIntegrable (fun i => μ[g|f i]) 1 μ :=
   hg.uniformIntegrable_condexp f.le
 #align measure_theory.integrable.uniform_integrable_condexp_filtration MeasureTheory.Integrable.uniformIntegrable_condexp_filtration
+-/
 
 section OfSet
 
 variable [Preorder ι]
 
+#print MeasureTheory.filtrationOfSet /-
 /-- Given a sequence of measurable sets `(sₙ)`, `filtration_of_set` is the smallest filtration
 such that `sₙ` is measurable with respect to the `n`-the sub-σ-algebra in `filtration_of_set`. -/
 def filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, MeasurableSet (s i)) : Filtration ι m
@@ -248,16 +279,21 @@ def filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, MeasurableSet (s i)) : Fil
   mono' n m hnm := MeasurableSpace.generateFrom_mono fun t ⟨k, hk₁, hk₂⟩ => ⟨k, hk₁.trans hnm, hk₂⟩
   le' n := MeasurableSpace.generateFrom_le fun t ⟨k, hk₁, hk₂⟩ => hk₂ ▸ hsm k
 #align measure_theory.filtration_of_set MeasureTheory.filtrationOfSet
+-/
 
+#print MeasureTheory.measurableSet_filtrationOfSet /-
 theorem measurableSet_filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, measurable_set[m] (s i)) (i : ι)
     {j : ι} (hj : j ≤ i) : measurable_set[filtrationOfSet hsm i] (s j) :=
   MeasurableSpace.measurableSet_generateFrom ⟨j, hj, rfl⟩
 #align measure_theory.measurable_set_filtration_of_set MeasureTheory.measurableSet_filtrationOfSet
+-/
 
+#print MeasureTheory.measurableSet_filtration_of_set' /-
 theorem measurableSet_filtration_of_set' {s : ι → Set Ω} (hsm : ∀ n, measurable_set[m] (s n))
     (i : ι) : measurable_set[filtrationOfSet hsm i] (s i) :=
   measurableSet_filtrationOfSet hsm i le_rfl
 #align measure_theory.measurable_set_filtration_of_set' MeasureTheory.measurableSet_filtration_of_set'
+-/
 
 end OfSet
 
@@ -266,6 +302,7 @@ namespace Filtration
 variable [TopologicalSpace β] [MetrizableSpace β] [mβ : MeasurableSpace β] [BorelSpace β]
   [Preorder ι]
 
+#print MeasureTheory.Filtration.natural /-
 /-- Given a sequence of functions, the natural filtration is the smallest sequence
 of σ-algebras such that that sequence of functions is measurable with respect to
 the filtration. -/
@@ -278,11 +315,13 @@ def natural (u : ι → Ω → β) (hum : ∀ i, StronglyMeasurable (u i)) : Fil
     rintro j hj s ⟨t, ht, rfl⟩
     exact (hum j).Measurable ht
 #align measure_theory.filtration.natural MeasureTheory.Filtration.natural
+-/
 
 section
 
 open MeasurableSpace
 
+#print MeasureTheory.Filtration.filtrationOfSet_eq_natural /-
 theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι → Set Ω}
     (hsm : ∀ i, measurable_set[m] (s i)) :
     filtrationOfSet hsm =
@@ -314,6 +353,7 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
     exacts [measurable_set_empty _, MeasurableSet.univ, measurable_set_generate_from ⟨n, hn, rfl⟩,
       MeasurableSet.compl (measurable_set_generate_from ⟨n, hn, rfl⟩)]
 #align measure_theory.filtration.filtration_of_set_eq_natural MeasureTheory.Filtration.filtrationOfSet_eq_natural
+-/
 
 end
 
@@ -322,6 +362,7 @@ section Limit
 variable {E : Type _} [Zero E] [TopologicalSpace E] {ℱ : Filtration ι m} {f : ι → Ω → E}
   {μ : Measure Ω}
 
+#print MeasureTheory.Filtration.limitProcess /-
 /-- Given a process `f` and a filtration `ℱ`, if `f` converges to some `g` almost everywhere and
 `g` is `⨆ n, ℱ n`-measurable, then `limit_process f ℱ μ` chooses said `g`, else it returns 0.
 
@@ -336,18 +377,24 @@ noncomputable def limitProcess (f : ι → Ω → E) (ℱ : Filtration ι m)
     Classical.choose h
   else 0
 #align measure_theory.filtration.limit_process MeasureTheory.Filtration.limitProcess
+-/
 
+#print MeasureTheory.Filtration.stronglyMeasurable_limitProcess /-
 theorem stronglyMeasurable_limitProcess : strongly_measurable[⨆ n, ℱ n] (limitProcess f ℱ μ) :=
   by
   rw [limit_process]
   split_ifs with h h
   exacts [(Classical.choose_spec h).1, strongly_measurable_zero]
 #align measure_theory.filtration.strongly_measurable_limit_process MeasureTheory.Filtration.stronglyMeasurable_limitProcess
+-/
 
+#print MeasureTheory.Filtration.stronglyMeasurable_limit_process' /-
 theorem stronglyMeasurable_limit_process' : strongly_measurable[m] (limitProcess f ℱ μ) :=
   stronglyMeasurable_limitProcess.mono (sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)
 #align measure_theory.filtration.strongly_measurable_limit_process' MeasureTheory.Filtration.stronglyMeasurable_limit_process'
+-/
 
+#print MeasureTheory.Filtration.memℒp_limitProcess_of_snorm_bdd /-
 theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _} [NormedAddCommGroup F]
     {ℱ : Filtration ℕ m} {f : ℕ → Ω → F} (hfm : ∀ n, AEStronglyMeasurable (f n) μ)
     (hbdd : ∀ n, snorm (f n) p μ ≤ R) : Memℒp (limitProcess f ℱ μ) p μ :=
@@ -363,6 +410,7 @@ theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Ty
     exact sSup_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _)
   · exact zero_mem_ℒp
 #align measure_theory.filtration.mem_ℒp_limit_process_of_snorm_bdd MeasureTheory.Filtration.memℒp_limitProcess_of_snorm_bdd
+-/
 
 end Limit
 
Diff
@@ -266,8 +266,6 @@ namespace Filtration
 variable [TopologicalSpace β] [MetrizableSpace β] [mβ : MeasurableSpace β] [BorelSpace β]
   [Preorder ι]
 
-include mβ
-
 /-- Given a sequence of functions, the natural filtration is the smallest sequence
 of σ-algebras such that that sequence of functions is measurable with respect to
 the filtration. -/
@@ -321,8 +319,6 @@ end
 
 section Limit
 
-omit mβ
-
 variable {E : Type _} [Zero E] [TopologicalSpace E] {ℱ : Filtration ι m} {f : ι → Ω → E}
   {μ : Measure Ω}
 
Diff
@@ -223,15 +223,15 @@ instance sigmaFinite_of_sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f
 #align measure_theory.sigma_finite_of_sigma_finite_filtration MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration
 
 -- can't exact here
-instance (priority := 100) FiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
-    (f : Filtration ι m) [FiniteMeasure μ] : SigmaFiniteFiltration μ f :=
+instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
+    (f : Filtration ι m) [IsFiniteMeasure μ] : SigmaFiniteFiltration μ f :=
   ⟨fun n => by infer_instance⟩
-#align measure_theory.is_finite_measure.sigma_finite_filtration MeasureTheory.FiniteMeasure.sigmaFiniteFiltration
+#align measure_theory.is_finite_measure.sigma_finite_filtration MeasureTheory.IsFiniteMeasure.sigmaFiniteFiltration
 
 /-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
 filtration is uniformly integrable. -/
 theorem Integrable.uniformIntegrable_condexp_filtration [Preorder ι] {μ : Measure Ω}
-    [FiniteMeasure μ] {f : Filtration ι m} {g : Ω → ℝ} (hg : Integrable g μ) :
+    [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω → ℝ} (hg : Integrable g μ) :
     UniformIntegrable (fun i => μ[g|f i]) 1 μ :=
   hg.uniformIntegrable_condexp f.le
 #align measure_theory.integrable.uniform_integrable_condexp_filtration MeasureTheory.Integrable.uniformIntegrable_condexp_filtration
@@ -244,7 +244,7 @@ variable [Preorder ι]
 such that `sₙ` is measurable with respect to the `n`-the sub-σ-algebra in `filtration_of_set`. -/
 def filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, MeasurableSet (s i)) : Filtration ι m
     where
-  seq i := MeasurableSpace.generateFrom { t | ∃ j ≤ i, s j = t }
+  seq i := MeasurableSpace.generateFrom {t | ∃ j ≤ i, s j = t}
   mono' n m hnm := MeasurableSpace.generateFrom_mono fun t ⟨k, hk₁, hk₂⟩ => ⟨k, hk₁.trans hnm, hk₂⟩
   le' n := MeasurableSpace.generateFrom_le fun t ⟨k, hk₁, hk₂⟩ => hk₂ ▸ hsm k
 #align measure_theory.filtration_of_set MeasureTheory.filtrationOfSet
@@ -303,10 +303,10 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
   · rintro t ⟨n, ht⟩
     suffices
       MeasurableSpace.generateFrom
-          { t |
+          {t |
             ∃ H : n ≤ i,
-              measurable_set[MeasurableSpace.comap ((s n).indicator (fun ω => 1 : Ω → β)) mβ] t } ≤
-        generate_from { t | ∃ (j : ι) (H : j ≤ i), s j = t }
+              measurable_set[MeasurableSpace.comap ((s n).indicator (fun ω => 1 : Ω → β)) mβ] t} ≤
+        generate_from {t | ∃ (j : ι) (H : j ≤ i), s j = t}
       by exact this _ ht
     refine' generate_from_le _
     rintro t ⟨hn, u, hu, hu'⟩
Diff
@@ -126,7 +126,7 @@ instance : SupSet (Filtration ι m) :=
     { seq := fun i => sSup ((fun f : Filtration ι m => f i) '' s)
       mono' := fun i j hij => by
         refine' sSup_le fun m' hm' => _
-        rw [Set.mem_image] at hm'
+        rw [Set.mem_image] at hm' 
         obtain ⟨f, hf_mem, hfm'⟩ := hm'
         rw [← hfm']
         refine' (f.mono hij).trans _
@@ -134,7 +134,7 @@ instance : SupSet (Filtration ι m) :=
         exact le_sSup hfj_mem
       le' := fun i => by
         refine' sSup_le fun m' hm' => _
-        rw [Set.mem_image] at hm'
+        rw [Set.mem_image] at hm' 
         obtain ⟨f, hf_mem, hfm'⟩ := hm'
         rw [← hfm']
         exact f.le i }⟩
@@ -306,14 +306,14 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
           { t |
             ∃ H : n ≤ i,
               measurable_set[MeasurableSpace.comap ((s n).indicator (fun ω => 1 : Ω → β)) mβ] t } ≤
-        generate_from { t | ∃ (j : ι)(H : j ≤ i), s j = t }
+        generate_from { t | ∃ (j : ι) (H : j ≤ i), s j = t }
       by exact this _ ht
     refine' generate_from_le _
     rintro t ⟨hn, u, hu, hu'⟩
     obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
-    pick_goal 4; rw [Set.mem_singleton_iff] at heq
-    all_goals rw [HEq] at hu'; rw [← hu']
-    exacts[measurable_set_empty _, MeasurableSet.univ, measurable_set_generate_from ⟨n, hn, rfl⟩,
+    pick_goal 4; rw [Set.mem_singleton_iff] at heq 
+    all_goals rw [HEq] at hu' ; rw [← hu']
+    exacts [measurable_set_empty _, MeasurableSet.univ, measurable_set_generate_from ⟨n, hn, rfl⟩,
       MeasurableSet.compl (measurable_set_generate_from ⟨n, hn, rfl⟩)]
 #align measure_theory.filtration.filtration_of_set_eq_natural MeasureTheory.Filtration.filtrationOfSet_eq_natural
 
@@ -345,7 +345,7 @@ theorem stronglyMeasurable_limitProcess : strongly_measurable[⨆ n, ℱ n] (lim
   by
   rw [limit_process]
   split_ifs with h h
-  exacts[(Classical.choose_spec h).1, strongly_measurable_zero]
+  exacts [(Classical.choose_spec h).1, strongly_measurable_zero]
 #align measure_theory.filtration.strongly_measurable_limit_process MeasureTheory.Filtration.stronglyMeasurable_limitProcess
 
 theorem stronglyMeasurable_limit_process' : strongly_measurable[m] (limitProcess f ℱ μ) :=
Diff
@@ -37,7 +37,7 @@ filtration, stochastic process
 
 open Filter Order TopologicalSpace
 
-open Classical MeasureTheory NNReal ENNReal Topology BigOperators
+open scoped Classical MeasureTheory NNReal ENNReal Topology BigOperators
 
 namespace MeasureTheory
 
Diff
@@ -67,12 +67,8 @@ protected theorem le (f : Filtration ι m) (i : ι) : f i ≤ m :=
 #align measure_theory.filtration.le MeasureTheory.Filtration.le
 
 @[ext]
-protected theorem ext {f g : Filtration ι m} (h : (f : ι → MeasurableSpace Ω) = g) : f = g :=
-  by
-  cases f
-  cases g
-  simp only
-  exact h
+protected theorem ext {f g : Filtration ι m} (h : (f : ι → MeasurableSpace Ω) = g) : f = g := by
+  cases f; cases g; simp only; exact h
 #align measure_theory.filtration.ext MeasureTheory.Filtration.ext
 
 variable (ι)
@@ -153,8 +149,7 @@ noncomputable instance : InfSet (Filtration ι m) :=
     { seq := fun i => if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m
       mono' := fun i j hij => by
         by_cases h_nonempty : Set.Nonempty s
-        swap
-        · simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl]
+        swap; · simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl]
         simp only [h_nonempty, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
           forall_apply_eq_imp_iff₂]
         refine' fun f hf_mem => le_trans _ (f.mono hij)
@@ -200,9 +195,7 @@ noncomputable instance : CompleteLattice (Filtration ι m)
     exact sInf_le ⟨f, hf_mem, rfl⟩
   le_inf s f h_forall i := by
     by_cases hs : s.nonempty
-    swap;
-    · simp only [Inf_def, hs, if_false]
-      exact f.le i
+    swap; · simp only [Inf_def, hs, if_false]; exact f.le i
     simp only [Inf_def, hs, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
       forall_apply_eq_imp_iff₂]
     exact fun g hg_mem => h_forall g hg_mem i
@@ -318,8 +311,7 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
     refine' generate_from_le _
     rintro t ⟨hn, u, hu, hu'⟩
     obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
-    pick_goal 4
-    rw [Set.mem_singleton_iff] at heq
+    pick_goal 4; rw [Set.mem_singleton_iff] at heq
     all_goals rw [HEq] at hu'; rw [← hu']
     exacts[measurable_set_empty _, MeasurableSet.univ, measurable_set_generate_from ⟨n, hn, rfl⟩,
       MeasurableSet.compl (measurable_set_generate_from ⟨n, hn, rfl⟩)]
Diff
@@ -361,7 +361,7 @@ theorem stronglyMeasurable_limit_process' : strongly_measurable[m] (limitProcess
 #align measure_theory.filtration.strongly_measurable_limit_process' MeasureTheory.Filtration.stronglyMeasurable_limit_process'
 
 theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _} [NormedAddCommGroup F]
-    {ℱ : Filtration ℕ m} {f : ℕ → Ω → F} (hfm : ∀ n, AeStronglyMeasurable (f n) μ)
+    {ℱ : Filtration ℕ m} {f : ℕ → Ω → F} (hfm : ∀ n, AEStronglyMeasurable (f n) μ)
     (hbdd : ∀ n, snorm (f n) p μ ≤ R) : Memℒp (limitProcess f ℱ μ) p μ :=
   by
   rw [limit_process]
Diff
@@ -127,50 +127,50 @@ theorem coeFn_inf {f g : Filtration ι m} : ⇑(f ⊓ g) = f ⊓ g :=
 
 instance : SupSet (Filtration ι m) :=
   ⟨fun s =>
-    { seq := fun i => supₛ ((fun f : Filtration ι m => f i) '' s)
+    { seq := fun i => sSup ((fun f : Filtration ι m => f i) '' s)
       mono' := fun i j hij => by
-        refine' supₛ_le fun m' hm' => _
+        refine' sSup_le fun m' hm' => _
         rw [Set.mem_image] at hm'
         obtain ⟨f, hf_mem, hfm'⟩ := hm'
         rw [← hfm']
         refine' (f.mono hij).trans _
         have hfj_mem : f j ∈ (fun g : filtration ι m => g j) '' s := ⟨f, hf_mem, rfl⟩
-        exact le_supₛ hfj_mem
+        exact le_sSup hfj_mem
       le' := fun i => by
-        refine' supₛ_le fun m' hm' => _
+        refine' sSup_le fun m' hm' => _
         rw [Set.mem_image] at hm'
         obtain ⟨f, hf_mem, hfm'⟩ := hm'
         rw [← hfm']
         exact f.le i }⟩
 
-theorem supₛ_def (s : Set (Filtration ι m)) (i : ι) :
-    supₛ s i = supₛ ((fun f : Filtration ι m => f i) '' s) :=
+theorem sSup_def (s : Set (Filtration ι m)) (i : ι) :
+    sSup s i = sSup ((fun f : Filtration ι m => f i) '' s) :=
   rfl
-#align measure_theory.filtration.Sup_def MeasureTheory.Filtration.supₛ_def
+#align measure_theory.filtration.Sup_def MeasureTheory.Filtration.sSup_def
 
 noncomputable instance : InfSet (Filtration ι m) :=
   ⟨fun s =>
-    { seq := fun i => if Set.Nonempty s then infₛ ((fun f : Filtration ι m => f i) '' s) else m
+    { seq := fun i => if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m
       mono' := fun i j hij => by
         by_cases h_nonempty : Set.Nonempty s
         swap
         · simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl]
-        simp only [h_nonempty, if_true, le_infₛ_iff, Set.mem_image, forall_exists_index, and_imp,
+        simp only [h_nonempty, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
           forall_apply_eq_imp_iff₂]
         refine' fun f hf_mem => le_trans _ (f.mono hij)
         have hfi_mem : f i ∈ (fun g : filtration ι m => g i) '' s := ⟨f, hf_mem, rfl⟩
-        exact infₛ_le hfi_mem
+        exact sInf_le hfi_mem
       le' := fun i => by
         by_cases h_nonempty : Set.Nonempty s
         swap; · simp only [h_nonempty, if_false, le_refl]
         simp only [h_nonempty, if_true]
         obtain ⟨f, hf_mem⟩ := h_nonempty
-        exact le_trans (infₛ_le ⟨f, hf_mem, rfl⟩) (f.le i) }⟩
+        exact le_trans (sInf_le ⟨f, hf_mem, rfl⟩) (f.le i) }⟩
 
-theorem infₛ_def (s : Set (Filtration ι m)) (i : ι) :
-    infₛ s i = if Set.Nonempty s then infₛ ((fun f : Filtration ι m => f i) '' s) else m :=
+theorem sInf_def (s : Set (Filtration ι m)) (i : ι) :
+    sInf s i = if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m :=
   rfl
-#align measure_theory.filtration.Inf_def MeasureTheory.Filtration.infₛ_def
+#align measure_theory.filtration.Inf_def MeasureTheory.Filtration.sInf_def
 
 noncomputable instance : CompleteLattice (Filtration ι m)
     where
@@ -186,24 +186,24 @@ noncomputable instance : CompleteLattice (Filtration ι m)
   inf_le_left f g i := inf_le_left
   inf_le_right f g i := inf_le_right
   le_inf f g h h_fg h_fh i := le_inf (h_fg i) (h_fh i)
-  supₛ := supₛ
-  le_sup s f hf_mem i := le_supₛ ⟨f, hf_mem, rfl⟩
+  sSup := sSup
+  le_sup s f hf_mem i := le_sSup ⟨f, hf_mem, rfl⟩
   sup_le s f h_forall i :=
-    supₛ_le fun m' hm' => by
+    sSup_le fun m' hm' => by
       obtain ⟨g, hg_mem, hfm'⟩ := hm'
       rw [← hfm']
       exact h_forall g hg_mem i
-  infₛ := infₛ
+  sInf := sInf
   inf_le s f hf_mem i := by
     have hs : s.nonempty := ⟨f, hf_mem⟩
     simp only [Inf_def, hs, if_true]
-    exact infₛ_le ⟨f, hf_mem, rfl⟩
+    exact sInf_le ⟨f, hf_mem, rfl⟩
   le_inf s f h_forall i := by
     by_cases hs : s.nonempty
     swap;
     · simp only [Inf_def, hs, if_false]
       exact f.le i
-    simp only [Inf_def, hs, if_true, le_infₛ_iff, Set.mem_image, forall_exists_index, and_imp,
+    simp only [Inf_def, hs, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
       forall_apply_eq_imp_iff₂]
     exact fun g hg_mem => h_forall g hg_mem i
   top := ⊤
@@ -281,9 +281,9 @@ the filtration. -/
 def natural (u : ι → Ω → β) (hum : ∀ i, StronglyMeasurable (u i)) : Filtration ι m
     where
   seq i := ⨆ j ≤ i, MeasurableSpace.comap (u j) mβ
-  mono' i j hij := bsupᵢ_mono fun k => ge_trans hij
+  mono' i j hij := biSup_mono fun k => ge_trans hij
   le' i := by
-    refine' supᵢ₂_le _
+    refine' iSup₂_le _
     rintro j hj s ⟨t, ht, rfl⟩
     exact (hum j).Measurable ht
 #align measure_theory.filtration.natural MeasureTheory.Filtration.natural
@@ -357,7 +357,7 @@ theorem stronglyMeasurable_limitProcess : strongly_measurable[⨆ n, ℱ n] (lim
 #align measure_theory.filtration.strongly_measurable_limit_process MeasureTheory.Filtration.stronglyMeasurable_limitProcess
 
 theorem stronglyMeasurable_limit_process' : strongly_measurable[m] (limitProcess f ℱ μ) :=
-  stronglyMeasurable_limitProcess.mono (supₛ_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)
+  stronglyMeasurable_limitProcess.mono (sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)
 #align measure_theory.filtration.strongly_measurable_limit_process' MeasureTheory.Filtration.stronglyMeasurable_limit_process'
 
 theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _} [NormedAddCommGroup F]
@@ -368,11 +368,11 @@ theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Ty
   split_ifs with h
   · refine'
       ⟨strongly_measurable.ae_strongly_measurable
-          ((Classical.choose_spec h).1.mono (supₛ_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)),
+          ((Classical.choose_spec h).1.mono (sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)),
         lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (Classical.choose_spec h).2)
           (lt_of_le_of_lt _ (ENNReal.coe_lt_top : ↑R < ∞))⟩
     simp_rw [liminf_eq, eventually_at_top]
-    exact supₛ_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _)
+    exact sSup_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _)
   · exact zero_mem_ℒp
 #align measure_theory.filtration.mem_ℒp_limit_process_of_snorm_bdd MeasureTheory.Filtration.memℒp_limitProcess_of_snorm_bdd
 
Diff
@@ -230,15 +230,15 @@ instance sigmaFinite_of_sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f
 #align measure_theory.sigma_finite_of_sigma_finite_filtration MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration
 
 -- can't exact here
-instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
-    (f : Filtration ι m) [IsFiniteMeasure μ] : SigmaFiniteFiltration μ f :=
+instance (priority := 100) FiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
+    (f : Filtration ι m) [FiniteMeasure μ] : SigmaFiniteFiltration μ f :=
   ⟨fun n => by infer_instance⟩
-#align measure_theory.is_finite_measure.sigma_finite_filtration MeasureTheory.IsFiniteMeasure.sigmaFiniteFiltration
+#align measure_theory.is_finite_measure.sigma_finite_filtration MeasureTheory.FiniteMeasure.sigmaFiniteFiltration
 
 /-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
 filtration is uniformly integrable. -/
 theorem Integrable.uniformIntegrable_condexp_filtration [Preorder ι] {μ : Measure Ω}
-    [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω → ℝ} (hg : Integrable g μ) :
+    [FiniteMeasure μ] {f : Filtration ι m} {g : Ω → ℝ} (hg : Integrable g μ) :
     UniformIntegrable (fun i => μ[g|f i]) 1 μ :=
   hg.uniformIntegrable_condexp f.le
 #align measure_theory.integrable.uniform_integrable_condexp_filtration MeasureTheory.Integrable.uniformIntegrable_condexp_filtration
Diff
@@ -224,10 +224,10 @@ class SigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m
   SigmaFinite : ∀ i : ι, SigmaFinite (μ.trim (f.le i))
 #align measure_theory.sigma_finite_filtration MeasureTheory.SigmaFiniteFiltration
 
-instance sigmaFiniteOfSigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m)
+instance sigmaFinite_of_sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m)
     [hf : SigmaFiniteFiltration μ f] (i : ι) : SigmaFinite (μ.trim (f.le i)) := by
   apply hf.sigma_finite
-#align measure_theory.sigma_finite_of_sigma_finite_filtration MeasureTheory.sigmaFiniteOfSigmaFiniteFiltration
+#align measure_theory.sigma_finite_of_sigma_finite_filtration MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration
 
 -- can't exact here
 instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
@@ -237,11 +237,11 @@ instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (
 
 /-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
 filtration is uniformly integrable. -/
-theorem Integrable.uniformIntegrableCondexpFiltration [Preorder ι] {μ : Measure Ω}
+theorem Integrable.uniformIntegrable_condexp_filtration [Preorder ι] {μ : Measure Ω}
     [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω → ℝ} (hg : Integrable g μ) :
     UniformIntegrable (fun i => μ[g|f i]) 1 μ :=
-  hg.uniformIntegrableCondexp f.le
-#align measure_theory.integrable.uniform_integrable_condexp_filtration MeasureTheory.Integrable.uniformIntegrableCondexpFiltration
+  hg.uniformIntegrable_condexp f.le
+#align measure_theory.integrable.uniform_integrable_condexp_filtration MeasureTheory.Integrable.uniformIntegrable_condexp_filtration
 
 section OfSet
 
@@ -360,7 +360,7 @@ theorem stronglyMeasurable_limit_process' : strongly_measurable[m] (limitProcess
   stronglyMeasurable_limitProcess.mono (supₛ_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)
 #align measure_theory.filtration.strongly_measurable_limit_process' MeasureTheory.Filtration.stronglyMeasurable_limit_process'
 
-theorem memℒpLimitProcessOfSnormBdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _} [NormedAddCommGroup F]
+theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _} [NormedAddCommGroup F]
     {ℱ : Filtration ℕ m} {f : ℕ → Ω → F} (hfm : ∀ n, AeStronglyMeasurable (f n) μ)
     (hbdd : ∀ n, snorm (f n) p μ ≤ R) : Memℒp (limitProcess f ℱ μ) p μ :=
   by
@@ -374,7 +374,7 @@ theorem memℒpLimitProcessOfSnormBdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _
     simp_rw [liminf_eq, eventually_at_top]
     exact supₛ_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _)
   · exact zero_mem_ℒp
-#align measure_theory.filtration.mem_ℒp_limit_process_of_snorm_bdd MeasureTheory.Filtration.memℒpLimitProcessOfSnormBdd
+#align measure_theory.filtration.mem_ℒp_limit_process_of_snorm_bdd MeasureTheory.Filtration.memℒp_limitProcess_of_snorm_bdd
 
 end Limit
 
Diff
@@ -101,7 +101,7 @@ instance : Bot (Filtration ι m) :=
 instance : Top (Filtration ι m) :=
   ⟨const ι m le_rfl⟩
 
-instance : HasSup (Filtration ι m) :=
+instance : Sup (Filtration ι m) :=
   ⟨fun f g =>
     { seq := fun i => f i ⊔ g i
       mono' := fun i j hij =>
@@ -113,7 +113,7 @@ theorem coeFn_sup {f g : Filtration ι m} : ⇑(f ⊔ g) = f ⊔ g :=
   rfl
 #align measure_theory.filtration.coe_fn_sup MeasureTheory.Filtration.coeFn_sup
 
-instance : HasInf (Filtration ι m) :=
+instance : Inf (Filtration ι m) :=
   ⟨fun f g =>
     { seq := fun i => f i ⊓ g i
       mono' := fun i j hij =>
Diff
@@ -37,7 +37,7 @@ filtration, stochastic process
 
 open Filter Order TopologicalSpace
 
-open Classical MeasureTheory NNReal Ennreal Topology BigOperators
+open Classical MeasureTheory NNReal ENNReal Topology BigOperators
 
 namespace MeasureTheory
 
@@ -370,7 +370,7 @@ theorem memℒpLimitProcessOfSnormBdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _
       ⟨strongly_measurable.ae_strongly_measurable
           ((Classical.choose_spec h).1.mono (supₛ_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)),
         lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (Classical.choose_spec h).2)
-          (lt_of_le_of_lt _ (Ennreal.coe_lt_top : ↑R < ∞))⟩
+          (lt_of_le_of_lt _ (ENNReal.coe_lt_top : ↑R < ∞))⟩
     simp_rw [liminf_eq, eventually_at_top]
     exact supₛ_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _)
   · exact zero_mem_ℒp

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 2 (#12361)

A PR analogous to #12338: reformatting proofs following the multiple goals linter of #12339.

Diff
@@ -299,10 +299,10 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
     refine' generateFrom_le _
     rintro t ⟨hn, u, _, hu'⟩
     obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
-    pick_goal 4; rw [Set.mem_singleton_iff] at heq
+    on_goal 4 => rw [Set.mem_singleton_iff] at heq
     all_goals rw [heq] at hu'; rw [← hu']
-    exacts [measurableSet_empty _, MeasurableSet.univ, measurableSet_generateFrom ⟨n, hn, rfl⟩,
-      MeasurableSet.compl (measurableSet_generateFrom ⟨n, hn, rfl⟩)]
+    exacts [MeasurableSet.univ, measurableSet_generateFrom ⟨n, hn, rfl⟩,
+      MeasurableSet.compl (measurableSet_generateFrom ⟨n, hn, rfl⟩), measurableSet_empty _]
 #align measure_theory.filtration.filtration_of_set_eq_natural MeasureTheory.Filtration.filtrationOfSet_eq_natural
 
 end
chore(Data/Finset): drop some Nonempty arguments (#9377)
  • rename Finset.Nonempty.image_iff to Finset.image_nonempty, deprecate the old version;
  • rename Set.nonempty_image_iff to Set.image_nonempty, deprecate the old version;
  • drop unneeded Finset.Nonempty arguments here and there;
  • add versions of some lemmas that assume Nonempty s instead of Nonempty (s.image f) or Nonempty (s.map f).
Diff
@@ -148,7 +148,7 @@ noncomputable instance : InfSet (Filtration ι m) :=
     { seq := fun i => if Set.Nonempty s then sInf ((fun f : Filtration ι m => f i) '' s) else m
       mono' := fun i j hij => by
         by_cases h_nonempty : Set.Nonempty s
-        swap; · simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl]
+        swap; · simp only [h_nonempty, Set.image_nonempty, if_false, le_refl]
         simp only [h_nonempty, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp,
           forall_apply_eq_imp_iff₂]
         refine' fun f hf_mem => le_trans _ (f.mono hij)
chore: remove nonterminal simp (#7580)

Removes nonterminal simps on lines looking like simp [...]

Diff
@@ -282,7 +282,7 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
     (hsm : ∀ i, MeasurableSet[m] (s i)) :
     filtrationOfSet hsm = natural (fun i => (s i).indicator (fun _ => 1 : Ω → β)) fun i =>
       stronglyMeasurable_one.indicator (hsm i) := by
-  simp [natural, filtrationOfSet, measurableSpace_iSup_eq]
+  simp only [filtrationOfSet, natural, measurableSpace_iSup_eq, exists_prop, mk.injEq]
   ext1 i
   refine' le_antisymm (generateFrom_le _) (generateFrom_le _)
   · rintro _ ⟨j, hij, rfl⟩
chore: remove unused simps (#6632)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -67,7 +67,7 @@ protected theorem le (f : Filtration ι m) (i : ι) : f i ≤ m :=
 
 @[ext]
 protected theorem ext {f g : Filtration ι m} (h : (f : ι → MeasurableSpace Ω) = g) : f = g := by
-  cases f; cases g; simp only; congr
+  cases f; cases g; congr
 #align measure_theory.filtration.ext MeasureTheory.Filtration.ext
 
 variable (ι)
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -40,7 +40,7 @@ namespace MeasureTheory
 
 /-- A `Filtration` on a measurable space `Ω` with σ-algebra `m` is a monotone
 sequence of sub-σ-algebras of `m`. -/
-structure Filtration {Ω : Type _} (ι : Type _) [Preorder ι] (m : MeasurableSpace Ω) where
+structure Filtration {Ω : Type*} (ι : Type*) [Preorder ι] (m : MeasurableSpace Ω) where
   seq : ι → MeasurableSpace Ω
   mono' : Monotone seq
   le' : ∀ i : ι, seq i ≤ m
@@ -48,7 +48,7 @@ structure Filtration {Ω : Type _} (ι : Type _) [Preorder ι] (m : MeasurableSp
 
 attribute [coe] Filtration.seq
 
-variable {Ω β ι : Type _} {m : MeasurableSpace Ω}
+variable {Ω β ι : Type*} {m : MeasurableSpace Ω}
 
 instance [Preorder ι] : CoeFun (Filtration ι m) fun _ => ι → MeasurableSpace Ω :=
   ⟨fun f => f.seq⟩
@@ -309,7 +309,7 @@ end
 
 section Limit
 
-variable {E : Type _} [Zero E] [TopologicalSpace E] {ℱ : Filtration ι m} {f : ι → Ω → E}
+variable {E : Type*} [Zero E] [TopologicalSpace E] {ℱ : Filtration ι m} {f : ι → Ω → E}
   {μ : Measure Ω}
 
 /-- Given a process `f` and a filtration `ℱ`, if `f` converges to some `g` almost everywhere and
@@ -335,7 +335,7 @@ theorem stronglyMeasurable_limit_process' : StronglyMeasurable[m] (limitProcess
   stronglyMeasurable_limitProcess.mono (sSup_le fun _ ⟨_, hn⟩ => hn ▸ ℱ.le _)
 #align measure_theory.filtration.strongly_measurable_limit_process' MeasureTheory.Filtration.stronglyMeasurable_limit_process'
 
-theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type _} [NormedAddCommGroup F]
+theorem memℒp_limitProcess_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} {F : Type*} [NormedAddCommGroup F]
     {ℱ : Filtration ℕ m} {f : ℕ → Ω → F} (hfm : ∀ n, AEStronglyMeasurable (f n) μ)
     (hbdd : ∀ n, snorm (f n) p μ ≤ R) : Memℒp (limitProcess f ℱ μ) p μ := by
   rw [limitProcess]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Kexing Ying. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying, Rémy Degenne
-
-! This file was ported from Lean 3 source module probability.process.filtration
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Function.ConditionalExpectation.Real
 
+#align_import probability.process.filtration from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Filtrations
 
chore: remove occurrences of semicolon after space (#5713)

This is the second half of the changes originally in #5699, removing all occurrences of ; after a space and implementing a linter rule to enforce it.

In most cases this 2-character substring has a space after it, so the following command was run first:

find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;

The remaining cases were few enough in number that they were done manually.

Diff
@@ -303,7 +303,7 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
     rintro t ⟨hn, u, _, hu'⟩
     obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
     pick_goal 4; rw [Set.mem_singleton_iff] at heq
-    all_goals rw [heq] at hu' ; rw [← hu']
+    all_goals rw [heq] at hu'; rw [← hu']
     exacts [measurableSet_empty _, MeasurableSet.univ, measurableSet_generateFrom ⟨n, hn, rfl⟩,
       MeasurableSet.compl (measurableSet_generateFrom ⟨n, hn, rfl⟩)]
 #align measure_theory.filtration.filtration_of_set_eq_natural MeasureTheory.Filtration.filtrationOfSet_eq_natural
chore: fix grammar in docs (#5668)
Diff
@@ -228,7 +228,7 @@ instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (
   ⟨fun n => by infer_instance⟩
 #align measure_theory.is_finite_measure.sigma_finite_filtration MeasureTheory.IsFiniteMeasure.sigmaFiniteFiltration
 
-/-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
+/-- Given an integrable function `g`, the conditional expectations of `g` with respect to a
 filtration is uniformly integrable. -/
 theorem Integrable.uniformIntegrable_condexp_filtration [Preorder ι] {μ : Measure Ω}
     [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω → ℝ} (hg : Integrable g μ) :
chore: tidy various files (#5449)
Diff
@@ -49,6 +49,8 @@ structure Filtration {Ω : Type _} (ι : Type _) [Preorder ι] (m : MeasurableSp
   le' : ∀ i : ι, seq i ≤ m
 #align measure_theory.filtration MeasureTheory.Filtration
 
+attribute [coe] Filtration.seq
+
 variable {Ω β ι : Type _} {m : MeasurableSpace Ω}
 
 instance [Preorder ι] : CoeFun (Filtration ι m) fun _ => ι → MeasurableSpace Ω :=
@@ -104,7 +106,7 @@ instance : Sup (Filtration ι m) :=
         sup_le ((f.mono hij).trans le_sup_left) ((g.mono hij).trans le_sup_right)
       le' := fun i => sup_le (f.le i) (g.le i) }⟩
 
--- @[norm_cast] -- Porting note: no longer involves casting (new-style structures)
+@[norm_cast]
 theorem coeFn_sup {f g : Filtration ι m} : ⇑(f ⊔ g) = ⇑f ⊔ ⇑g :=
   rfl
 #align measure_theory.filtration.coe_fn_sup MeasureTheory.Filtration.coeFn_sup
@@ -116,7 +118,7 @@ instance : Inf (Filtration ι m) :=
         le_inf (inf_le_left.trans (f.mono hij)) (inf_le_right.trans (g.mono hij))
       le' := fun i => inf_le_left.trans (f.le i) }⟩
 
--- @[norm_cast] -- Porting note: no longer involves casting (new-style structures)
+@[norm_cast]
 theorem coeFn_inf {f g : Filtration ι m} : ⇑(f ⊓ g) = ⇑f ⊓ ⇑g :=
   rfl
 #align measure_theory.filtration.coe_fn_inf MeasureTheory.Filtration.coeFn_inf
@@ -217,11 +219,10 @@ class SigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m
 #align measure_theory.sigma_finite_filtration MeasureTheory.SigmaFiniteFiltration
 
 instance sigmaFinite_of_sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω) (f : Filtration ι m)
-    [hf : SigmaFiniteFiltration μ f] (i : ι) : SigmaFinite (μ.trim (f.le i)) := by
-  apply hf.SigmaFinite
+    [hf : SigmaFiniteFiltration μ f] (i : ι) : SigmaFinite (μ.trim (f.le i)) :=
+  hf.SigmaFinite _
 #align measure_theory.sigma_finite_of_sigma_finite_filtration MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration
 
--- can't exact here
 instance (priority := 100) IsFiniteMeasure.sigmaFiniteFiltration [Preorder ι] (μ : Measure Ω)
     (f : Filtration ι m) [IsFiniteMeasure μ] : SigmaFiniteFiltration μ f :=
   ⟨fun n => by infer_instance⟩
@@ -294,11 +295,10 @@ theorem filtrationOfSet_eq_natural [MulZeroOneClass β] [Nontrivial β] {s : ι
     ext x
     simp [Set.indicator_const_preimage_eq_union]
   · rintro t ⟨n, ht⟩
-    suffices MeasurableSpace.generateFrom {t | ∃ _ : n ≤ i,
+    suffices MeasurableSpace.generateFrom {t | n ≤ i ∧
       MeasurableSet[MeasurableSpace.comap ((s n).indicator (fun _ => 1 : Ω → β)) mβ] t} ≤
-        MeasurableSpace.generateFrom {t | ∃ (j : ι) (_ : j ≤ i), s j = t} by
-      -- Porting note: was `exact this _ ht`
-      convert this _ _ <;> simp_all only [exists_prop]
+        MeasurableSpace.generateFrom {t | ∃ (j : ι), j ≤ i ∧ s j = t} by
+      exact this _ ht
     refine' generateFrom_le _
     rintro t ⟨hn, u, _, hu'⟩
     obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
feat: port Probability.BorelCantelli (#5286)
Diff
@@ -252,10 +252,10 @@ theorem measurableSet_filtrationOfSet {s : ι → Set Ω} (hsm : ∀ i, Measurab
   MeasurableSpace.measurableSet_generateFrom ⟨j, hj, rfl⟩
 #align measure_theory.measurable_set_filtration_of_set MeasureTheory.measurableSet_filtrationOfSet
 
-theorem measurableSet_filtration_of_set' {s : ι → Set Ω} (hsm : ∀ n, MeasurableSet[m] (s n))
+theorem measurableSet_filtrationOfSet' {s : ι → Set Ω} (hsm : ∀ n, MeasurableSet[m] (s n))
     (i : ι) : MeasurableSet[filtrationOfSet hsm i] (s i) :=
   measurableSet_filtrationOfSet hsm i le_rfl
-#align measure_theory.measurable_set_filtration_of_set' MeasureTheory.measurableSet_filtration_of_set'
+#align measure_theory.measurable_set_filtration_of_set' MeasureTheory.measurableSet_filtrationOfSet'
 
 end OfSet
 
feat: port Probability.Process.Filtration (#5195)

Dependencies 12 + 998

999 files ported (98.8%)
456501 lines ported (98.8%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file