Documentation

Mathlib.Probability.Process.Filtration

Filtrations #

This file defines filtrations of a measurable space and σ-finite filtrations.

Main definitions #

Main results #

Tags #

filtration, stochastic process

structure MeasureTheory.Filtration {Ω : Type u_1} (ι : Type u_2) [Preorder ι] (m : MeasurableSpace Ω) :
Type (max u_1 u_2)

A Filtration on a measurable space Ω with σ-algebra m is a monotone sequence of sub-σ-algebras of m.

Instances For
    theorem MeasureTheory.Filtration.mono {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {i j : ι} (f : Filtration ι m) (hij : i j) :
    f i f j
    theorem MeasureTheory.Filtration.le {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] (f : Filtration ι m) (i : ι) :
    f i m
    theorem MeasureTheory.Filtration.ext {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} (h : f = g) :
    f = g
    theorem MeasureTheory.Filtration.ext_iff {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
    f = g f = g
    def MeasureTheory.Filtration.const {Ω : Type u_1} (ι : Type u_2) {m : MeasurableSpace Ω} [Preorder ι] (m' : MeasurableSpace Ω) (hm' : m' m) :

    The constant filtration which is equal to m for all i : ι.

    Equations
    Instances For
      @[simp]
      theorem MeasureTheory.Filtration.const_apply {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {m' : MeasurableSpace Ω} {hm' : m' m} (i : ι) :
      (const ι m' hm') i = m'
      instance MeasureTheory.Filtration.instLE {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] :
      LE (Filtration ι m)
      Equations
      instance MeasureTheory.Filtration.instMax {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      theorem MeasureTheory.Filtration.coeFn_sup {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
      (fg) = fg
      instance MeasureTheory.Filtration.instMin {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      theorem MeasureTheory.Filtration.coeFn_inf {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
      (fg) = fg
      instance MeasureTheory.Filtration.instSupSet {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      • One or more equations did not get rendered due to their size.
      theorem MeasureTheory.Filtration.sSup_def {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] (s : Set (Filtration ι m)) (i : ι) :
      (sSup s) i = sSup ((fun (f : Filtration ι m) => f i) '' s)
      noncomputable instance MeasureTheory.Filtration.instInfSet {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      • One or more equations did not get rendered due to their size.
      theorem MeasureTheory.Filtration.sInf_def {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] (s : Set (Filtration ι m)) (i : ι) :
      (sInf s) i = if s.Nonempty then sInf ((fun (f : Filtration ι m) => f i) '' s) else m
      noncomputable instance MeasureTheory.Filtration.instCompleteLattice {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      • One or more equations did not get rendered due to their size.
      theorem MeasureTheory.measurableSet_of_filtration {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {s : Set Ω} {i : ι} (hs : MeasurableSet s) :
      class MeasureTheory.SigmaFiniteFiltration {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) :

      A measure is σ-finite with respect to filtration if it is σ-finite with respect to all the sub-σ-algebra of the filtration.

      Instances
        instance MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) [hf : SigmaFiniteFiltration μ f] (i : ι) :
        SigmaFinite (μ.trim )
        @[instance 100]
        theorem MeasureTheory.Integrable.uniformIntegrable_condExp_filtration {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {μ : Measure Ω} [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω} (hg : Integrable g μ) :
        UniformIntegrable (fun (i : ι) => μ[g|f i]) 1 μ

        Given an integrable function g, the conditional expectations of g with respect to a filtration is uniformly integrable.

        theorem MeasureTheory.Filtration.condExp_condExp {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : ΩE) {μ : Measure Ω} ( : Filtration ι m) {i j : ι} (hij : i j) [SigmaFinite (μ.trim )] :
        μ[μ[f| j]| i] =ᶠ[ae μ] μ[f| i]
        def MeasureTheory.filtrationOfSet {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) :

        Given a sequence of measurable sets (sₙ), filtrationOfSet is the smallest filtration such that sₙ is measurable with respect to the n-th sub-σ-algebra in filtrationOfSet.

        Equations
        Instances For
          theorem MeasureTheory.measurableSet_filtrationOfSet {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) (i : ι) {j : ι} (hj : j i) :
          theorem MeasureTheory.measurableSet_filtrationOfSet' {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (n : ι), MeasurableSet (s n)) (i : ι) :
          theorem MeasureTheory.Filtration.rightCont_def {Ω : Type u_3} {ι : Type u_4} {m : MeasurableSpace Ω} [PartialOrder ι] (𝓕 : Filtration ι m) :
          𝓕.rightCont = { seq := fun (i : ι) => if (nhdsWithin i (Set.Ioi i)).NeBot then ⨅ (j : ι), ⨅ (_ : j > i), 𝓕 j else 𝓕 i, mono' := , le' := }
          @[irreducible]
          noncomputable def MeasureTheory.Filtration.rightCont {Ω : Type u_3} {ι : Type u_4} {m : MeasurableSpace Ω} [PartialOrder ι] (𝓕 : Filtration ι m) :

          Given a filtration 𝓕, its right continuation is the filtration 𝓕₊ defined as follows:

          • If i is isolated on the right, then 𝓕₊ i := 𝓕 i;
          • Otherwise, 𝓕₊ i := ⨅ j > i, 𝓕 j. It is sometimes simply defined as 𝓕₊ i := ⨅ j > i, 𝓕 j when the index type is . In the general case this is not ideal however. If i is maximal for instance, then 𝓕₊ i = ⊤, which is inconvenient because 𝓕₊ is not a Filtration ι m anymore. If the index type is discrete (such as ), then we would have 𝓕 = 𝓕₊ (i.e. 𝓕 is right-continuous) only if 𝓕 is constant.

          To avoid requiring a TopologicalSpace instance on ι in the definition, we endow ι with the order topology Preorder.topology inside the definition. Say you write a statement about 𝓕₊ which does not require a TopologicalSpace structure on ι, but you wish to use a statement which requires a topology (such as rightCont_apply). Then you can endow ι with the order topology by writing

            letI := Preorder.topology ι
            haveI : OrderTopology ι := ⟨rfl⟩
          
          Equations
          Instances For

            Given a filtration 𝓕, its right continuation is the filtration 𝓕₊ defined as follows:

            • If i is isolated on the right, then 𝓕₊ i := 𝓕 i;
            • Otherwise, 𝓕₊ i := ⨅ j > i, 𝓕 j. It is sometimes simply defined as 𝓕₊ i := ⨅ j > i, 𝓕 j when the index type is . In the general case this is not ideal however. If i is maximal for instance, then 𝓕₊ i = ⊤, which is inconvenient because 𝓕₊ is not a Filtration ι m anymore. If the index type is discrete (such as ), then we would have 𝓕 = 𝓕₊ (i.e. 𝓕 is right-continuous) only if 𝓕 is constant.

            To avoid requiring a TopologicalSpace instance on ι in the definition, we endow ι with the order topology Preorder.topology inside the definition. Say you write a statement about 𝓕₊ which does not require a TopologicalSpace structure on ι, but you wish to use a statement which requires a topology (such as rightCont_apply). Then you can endow ι with the order topology by writing

              letI := Preorder.topology ι
              haveI : OrderTopology ι := ⟨rfl⟩
            
            Equations
            Instances For
              theorem MeasureTheory.Filtration.rightCont_apply {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : Filtration ι m) (i : ι) :
              𝓕.rightCont i = if (nhdsWithin i (Set.Ioi i)).NeBot then ⨅ (j : ι), ⨅ (_ : j > i), 𝓕 j else 𝓕 i
              theorem MeasureTheory.Filtration.rightCont_eq_of_nhdsGT_eq_bot {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : Filtration ι m) {i : ι} (hi : nhdsWithin i (Set.Ioi i) = ) :
              𝓕.rightCont i = 𝓕 i
              @[simp]
              theorem MeasureTheory.Filtration.rightCont_eq_self {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [LinearOrder ι] [SuccOrder ι] (𝓕 : Filtration ι m) :
              𝓕.rightCont = 𝓕

              If the index type is a SuccOrder, then 𝓕₊ = 𝓕.

              theorem MeasureTheory.Filtration.rightCont_eq_of_isMax {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] (𝓕 : Filtration ι m) {i : ι} (hi : IsMax i) :
              𝓕.rightCont i = 𝓕 i
              theorem MeasureTheory.Filtration.rightCont_eq_of_exists_gt {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [LinearOrder ι] (𝓕 : Filtration ι m) {i : ι} (hi : j > i, Set.Ioo i j = ) :
              𝓕.rightCont i = 𝓕 i
              theorem MeasureTheory.Filtration.rightCont_eq_of_neBot_nhdsGT {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : Filtration ι m) (i : ι) [(nhdsWithin i (Set.Ioi i)).NeBot] :
              𝓕.rightCont i = ⨅ (j : ι), ⨅ (_ : j > i), 𝓕 j

              If i is not isolated on the right, then 𝓕₊ i = ⨅ j > i, 𝓕 j. This is for instance the case when ι is a densely ordered linear order with no maximal elements and equipped with the order topology, see rightCont_eq.

              theorem MeasureTheory.Filtration.rightCont_eq_of_not_isMax {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [LinearOrder ι] [DenselyOrdered ι] (𝓕 : Filtration ι m) {i : ι} (hi : ¬IsMax i) :
              𝓕.rightCont i = ⨅ (j : ι), ⨅ (_ : j > i), 𝓕 j
              theorem MeasureTheory.Filtration.rightCont_eq {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [LinearOrder ι] [DenselyOrdered ι] [NoMaxOrder ι] (𝓕 : Filtration ι m) (i : ι) :
              𝓕.rightCont i = ⨅ (j : ι), ⨅ (_ : j > i), 𝓕 j

              If ι is a densely ordered linear order with no maximal element, then no point is isolated on the right, so that 𝓕₊ i = ⨅ j > i, 𝓕 j holds for all i. This is in particular the case when ι := ℝ≥0.

              theorem MeasureTheory.Filtration.le_rightCont {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] (𝓕 : Filtration ι m) :
              𝓕 𝓕.rightCont
              @[simp]
              theorem MeasureTheory.Filtration.rightCont_self {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] (𝓕 : Filtration ι m) :
              class MeasureTheory.Filtration.IsRightContinuous {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] (𝓕 : Filtration ι m) :

              A filtration 𝓕 is right continuous if it is equal to its right continuation 𝓕₊.

              Instances
                theorem MeasureTheory.Filtration.IsRightContinuous.eq {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] {𝓕 : Filtration ι m} [h : 𝓕.IsRightContinuous] :
                𝓕.rightCont = 𝓕
                theorem MeasureTheory.Filtration.IsRightContinuous.measurableSet {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [PartialOrder ι] {𝓕 : Filtration ι m} [𝓕.IsRightContinuous] {i : ι} {s : Set Ω} (hs : MeasurableSet s) :
                def MeasureTheory.Filtration.natural {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} {β : ιType u_3} [(i : ι) → TopologicalSpace (β i)] [∀ (i : ι), TopologicalSpace.MetrizableSpace (β i)] [ : (i : ι) → MeasurableSpace (β i)] [∀ (i : ι), BorelSpace (β i)] [Preorder ι] (u : (i : ι) → Ωβ i) (hum : ∀ (i : ι), StronglyMeasurable (u i)) :

                Given a sequence of functions, the natural filtration is the smallest sequence of σ-algebras such that the sequence of functions is measurable with respect to the filtration.

                Equations
                Instances For
                  theorem MeasureTheory.Filtration.filtrationOfSet_eq_natural {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} {β : ιType u_3} [(i : ι) → TopologicalSpace (β i)] [∀ (i : ι), TopologicalSpace.MetrizableSpace (β i)] [ : (i : ι) → MeasurableSpace (β i)] [∀ (i : ι), BorelSpace (β i)] [Preorder ι] [(i : ι) → MulZeroOneClass (β i)] [∀ (i : ι), Nontrivial (β i)] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) :
                  filtrationOfSet hsm = natural (fun (i : ι) => (s i).indicator fun (x : Ω) => 1)
                  noncomputable def MeasureTheory.Filtration.limitProcess {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] (f : ιΩE) ( : Filtration ι m) (μ : Measure Ω) :
                  ΩE

                  Given a process f and a filtration , if f converges to some g almost everywhere and g is ⨆ n, ℱ n-measurable, then limitProcess f ℱ μ chooses said g, else it returns 0.

                  This definition is used to phrase the a.e. martingale convergence theorem Submartingale.ae_tendsto_limitProcess where an L¹-bounded submartingale f adapted to converges to limitProcess f ℱ μ μ-almost everywhere.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem MeasureTheory.Filtration.stronglyMeasurable_limitProcess {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] { : Filtration ι m} {f : ιΩE} {μ : Measure Ω} :
                    theorem MeasureTheory.Filtration.stronglyMeasurable_limit_process' {Ω : Type u_1} {ι : Type u_2} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] { : Filtration ι m} {f : ιΩE} {μ : Measure Ω} :
                    theorem MeasureTheory.Filtration.memLp_limitProcess_of_eLpNorm_bdd {Ω : Type u_1} {m : MeasurableSpace Ω} {μ : Measure Ω} {R : NNReal} {p : ENNReal} {F : Type u_5} [NormedAddCommGroup F] { : Filtration m} {f : ΩF} (hfm : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hbdd : ∀ (n : ), eLpNorm (f n) p μ R) :
                    MemLp (limitProcess f μ) p μ

                    Filtration of the first events #

                    def MeasureTheory.Filtration.piLE {ι : Type u_2} [Preorder ι] {X : ιType u_4} [(i : ι) → MeasurableSpace (X i)] :

                    The canonical filtration on the product space Π i, X i, where piLE i consists of measurable sets depending only on coordinates ≤ i.

                    Equations
                    Instances For
                      def MeasureTheory.Filtration.piFinset {ι : Type u_4} {X : ιType u_5} [(i : ι) → MeasurableSpace (X i)] :

                      The filtration of events which only depends on finitely many coordinates on the product space Π i, X i, piFinset s consists of measurable sets depending only on coordinates in s, where s : Finset ι.

                      Equations
                      Instances For

                        The exterior σ-algebras of finite sets of α form a cofiltration indexed by Finset α.

                        Equations
                        Instances For