Documentation

Mathlib.Probability.Process.Filtration

Filtrations #

This file defines filtrations of a measurable space and σ-finite filtrations.

Main definitions #

Main results #

Tags #

filtration, stochastic process

structure MeasureTheory.Filtration {Ω : Type u_1} (ι : Type u_2) [Preorder ι] (m : MeasurableSpace Ω) :
Type (max u_1 u_2)

A Filtration on a measurable space Ω with σ-algebra m is a monotone sequence of sub-σ-algebras of m.

Instances For
    theorem MeasureTheory.Filtration.mono {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {i j : ι} (f : Filtration ι m) (hij : i j) :
    f i f j
    theorem MeasureTheory.Filtration.le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : Filtration ι m) (i : ι) :
    f i m
    theorem MeasureTheory.Filtration.ext {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} (h : f = g) :
    f = g
    def MeasureTheory.Filtration.const {Ω : Type u_1} (ι : Type u_3) {m : MeasurableSpace Ω} [Preorder ι] (m' : MeasurableSpace Ω) (hm' : m' m) :

    The constant filtration which is equal to m for all i : ι.

    Equations
    Instances For
      @[simp]
      theorem MeasureTheory.Filtration.const_apply {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {m' : MeasurableSpace Ω} {hm' : m' m} (i : ι) :
      (const ι m' hm') i = m'
      instance MeasureTheory.Filtration.instLE {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
      LE (Filtration ι m)
      Equations
      instance MeasureTheory.Filtration.instMax {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      theorem MeasureTheory.Filtration.coeFn_sup {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
      ↑(f g) = f g
      instance MeasureTheory.Filtration.instMin {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      theorem MeasureTheory.Filtration.coeFn_inf {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f g : Filtration ι m} :
      ↑(f g) = f g
      instance MeasureTheory.Filtration.instSupSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      • One or more equations did not get rendered due to their size.
      theorem MeasureTheory.Filtration.sSup_def {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (s : Set (Filtration ι m)) (i : ι) :
      (sSup s) i = sSup ((fun (f : Filtration ι m) => f i) '' s)
      noncomputable instance MeasureTheory.Filtration.instInfSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] :
      Equations
      • One or more equations did not get rendered due to their size.
      theorem MeasureTheory.Filtration.sInf_def {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (s : Set (Filtration ι m)) (i : ι) :
      (sInf s) i = if s.Nonempty then sInf ((fun (f : Filtration ι m) => f i) '' s) else m
      theorem MeasureTheory.measurableSet_of_filtration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {s : Set Ω} {i : ι} (hs : MeasurableSet s) :
      class MeasureTheory.SigmaFiniteFiltration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) :

      A measure is σ-finite with respect to filtration if it is σ-finite with respect to all the sub-σ-algebra of the filtration.

      Instances
        instance MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (μ : Measure Ω) (f : Filtration ι m) [hf : SigmaFiniteFiltration μ f] (i : ι) :
        SigmaFinite (μ.trim )
        @[instance 100]
        theorem MeasureTheory.Integrable.uniformIntegrable_condExp_filtration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {μ : Measure Ω} [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω} (hg : Integrable g μ) :
        UniformIntegrable (fun (i : ι) => μ[g|f i]) 1 μ

        Given an integrable function g, the conditional expectations of g with respect to a filtration is uniformly integrable.

        @[deprecated MeasureTheory.Integrable.uniformIntegrable_condExp_filtration (since := "2025-01-21")]
        theorem MeasureTheory.Integrable.uniformIntegrable_condexp_filtration {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {μ : Measure Ω} [IsFiniteMeasure μ] {f : Filtration ι m} {g : Ω} (hg : Integrable g μ) :
        UniformIntegrable (fun (i : ι) => μ[g|f i]) 1 μ

        Alias of MeasureTheory.Integrable.uniformIntegrable_condExp_filtration.


        Given an integrable function g, the conditional expectations of g with respect to a filtration is uniformly integrable.

        theorem MeasureTheory.Filtration.condExp_condExp {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : ΩE) {μ : Measure Ω} ( : Filtration ι m) {i j : ι} (hij : i j) [SigmaFinite (μ.trim )] :
        μ[μ[f| j]| i] =ᶠ[ae μ] μ[f| i]
        def MeasureTheory.filtrationOfSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) :

        Given a sequence of measurable sets (sₙ), filtrationOfSet is the smallest filtration such that sₙ is measurable with respect to the n-th sub-σ-algebra in filtrationOfSet.

        Equations
        Instances For
          theorem MeasureTheory.measurableSet_filtrationOfSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) (i : ι) {j : ι} (hj : j i) :
          theorem MeasureTheory.measurableSet_filtrationOfSet' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {s : ιSet Ω} (hsm : ∀ (n : ι), MeasurableSet (s n)) (i : ι) :
          def MeasureTheory.Filtration.natural {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [TopologicalSpace β] [TopologicalSpace.MetrizableSpace β] [ : MeasurableSpace β] [BorelSpace β] [Preorder ι] (u : ιΩβ) (hum : ∀ (i : ι), StronglyMeasurable (u i)) :

          Given a sequence of functions, the natural filtration is the smallest sequence of σ-algebras such that that sequence of functions is measurable with respect to the filtration.

          Equations
          Instances For
            theorem MeasureTheory.Filtration.filtrationOfSet_eq_natural {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [TopologicalSpace β] [TopologicalSpace.MetrizableSpace β] [ : MeasurableSpace β] [BorelSpace β] [Preorder ι] [MulZeroOneClass β] [Nontrivial β] {s : ιSet Ω} (hsm : ∀ (i : ι), MeasurableSet (s i)) :
            filtrationOfSet hsm = natural (fun (i : ι) => (s i).indicator fun (x : Ω) => 1)
            noncomputable def MeasureTheory.Filtration.limitProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] (f : ιΩE) ( : Filtration ι m) (μ : Measure Ω) :
            ΩE

            Given a process f and a filtration , if f converges to some g almost everywhere and g is ⨆ n, ℱ n-measurable, then limitProcess f ℱ μ chooses said g, else it returns 0.

            This definition is used to phrase the a.e. martingale convergence theorem Submartingale.ae_tendsto_limitProcess where an L¹-bounded submartingale f adapted to converges to limitProcess f ℱ μ μ-almost everywhere.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem MeasureTheory.Filtration.stronglyMeasurable_limitProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] { : Filtration ι m} {f : ιΩE} {μ : Measure Ω} :
              theorem MeasureTheory.Filtration.stronglyMeasurable_limit_process' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {E : Type u_4} [Zero E] [TopologicalSpace E] { : Filtration ι m} {f : ιΩE} {μ : Measure Ω} :
              theorem MeasureTheory.Filtration.memLp_limitProcess_of_eLpNorm_bdd {Ω : Type u_1} {m : MeasurableSpace Ω} {μ : Measure Ω} {R : NNReal} {p : ENNReal} {F : Type u_5} [NormedAddCommGroup F] { : Filtration m} {f : ΩF} (hfm : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hbdd : ∀ (n : ), eLpNorm (f n) p μ R) :
              MemLp (limitProcess f μ) p μ
              @[deprecated MeasureTheory.Filtration.memLp_limitProcess_of_eLpNorm_bdd (since := "2025-02-21")]
              theorem MeasureTheory.Filtration.memℒp_limitProcess_of_eLpNorm_bdd {Ω : Type u_1} {m : MeasurableSpace Ω} {μ : Measure Ω} {R : NNReal} {p : ENNReal} {F : Type u_5} [NormedAddCommGroup F] { : Filtration m} {f : ΩF} (hfm : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hbdd : ∀ (n : ), eLpNorm (f n) p μ R) :
              MemLp (limitProcess f μ) p μ

              Alias of MeasureTheory.Filtration.memLp_limitProcess_of_eLpNorm_bdd.

              Filtration of the first events #

              def MeasureTheory.Filtration.piLE {ι : Type u_3} [Preorder ι] {X : ιType u_4} [(i : ι) → MeasurableSpace (X i)] :

              The canonical filtration on the product space Π i, X i, where piLE i consists of measurable sets depending only on coordinates ≤ i.

              Equations
              Instances For
                def MeasureTheory.Filtration.piFinset {ι : Type u_4} {X : ιType u_5} [(i : ι) → MeasurableSpace (X i)] :

                The filtration of events which only depends on finitely many coordinates on the product space Π i, X i, piFinset s consists of measurable sets depending only on coordinates in s, where s : Finset ι.

                Equations
                Instances For

                  The exterior σ-algebras of finite sets of α form a cofiltration indexed by Finset α.

                  Equations
                  Instances For