Documentation

Mathlib.Order.OrderDual

Order dual #

This file defines OrderDual α, a type synonym reversing the meaning of all inequalities, with notation αᵒᵈ.

Notation #

αᵒᵈ is notation for OrderDual α.

Implementation notes #

One should not abuse definitional equality between α and αᵒᵈ. Instead, explicit coercions should be inserted:

def OrderDual (α : Type u_2) :
Type u_2

Type synonym to equip a type with the dual order: means and < means >. αᵒᵈ is notation for OrderDual α.

Equations
Instances For

    Type synonym to equip a type with the dual order: means and < means >. αᵒᵈ is notation for OrderDual α.

    Equations
    Instances For
      instance OrderDual.instNonempty (α : Type u_2) [h : Nonempty α] :
      instance OrderDual.instLE (α : Type u_2) [LE α] :
      Equations
      instance OrderDual.instLT (α : Type u_2) [LT α] :
      Equations
      instance OrderDual.instOrd (α : Type u_2) [Ord α] :
      Equations
      instance OrderDual.instSup (α : Type u_2) [Min α] :
      Equations
      instance OrderDual.instInf (α : Type u_2) [Max α] :
      Equations
      instance OrderDual.instIsTransLE {α : Type u_1} [LE α] [T : IsTrans α LE.le] :
      instance OrderDual.instIsTransLT {α : Type u_1} [LT α] [T : IsTrans α LT.lt] :
      instance OrderDual.instPreorder (α : Type u_2) [Preorder α] :
      Equations
      Equations
      Equations
      • One or more equations did not get rendered due to their size.
      def LinearOrder.swap (α : Type u_2) :

      The opposite linear order to a given linear order

      Equations
      Instances For
        theorem OrderDual.Ord.dual_dual (α : Type u_2) [H : Ord α] :

        DenselyOrdered for OrderDual #