topology.sets.compactsMathlib.Topology.Sets.Compacts

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(topology/sets/compacts): add positive_compacts.map (#18872)

Also adds some missing functorial lemmas about map.

Diff
@@ -26,7 +26,7 @@ For a topological space `α`,
 
 open set
 
-variables {α β : Type*} [topological_space α] [topological_space β]
+variables {α β γ : Type*} [topological_space α] [topological_space β] [topological_space γ]
 
 namespace topological_space
 
@@ -93,20 +93,35 @@ end
 protected def map (f : α → β) (hf : continuous f) (K : compacts α) : compacts β :=
 ⟨f '' K.1, K.2.image hf⟩
 
-@[simp] lemma coe_map {f : α → β} (hf : continuous f) (s : compacts α) :
+@[simp, norm_cast] lemma coe_map {f : α → β} (hf : continuous f) (s : compacts α) :
   (s.map f hf : set β) = f '' s := rfl
 
+@[simp] lemma map_id (K : compacts α) : K.map id continuous_id = K := compacts.ext $ set.image_id _
+
+lemma map_comp (f : β → γ) (g : α → β) (hf : continuous f) (hg : continuous g) (K : compacts α) :
+  K.map (f ∘ g) (hf.comp hg) = (K.map g hg).map f hf := compacts.ext $ set.image_comp _ _ _
+
 /-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
-@[simp] protected def equiv (f : α ≃ₜ β) : compacts α ≃ compacts β :=
+@[simps] protected def equiv (f : α ≃ₜ β) : compacts α ≃ compacts β :=
 { to_fun := compacts.map f f.continuous,
   inv_fun := compacts.map _ f.symm.continuous,
   left_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.symm_comp_self, image_id] },
   right_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.self_comp_symm, image_id] } }
 
+@[simp] lemma equiv_refl : compacts.equiv (homeomorph.refl α) = equiv.refl _ :=
+equiv.ext map_id
+
+@[simp] lemma equiv_trans (f : α ≃ₜ β) (g : β ≃ₜ γ) :
+  compacts.equiv (f.trans g) = (compacts.equiv f).trans (compacts.equiv g) :=
+equiv.ext $ map_comp _ _ _ _
+
+@[simp] lemma equiv_symm (f : α ≃ₜ β) : compacts.equiv f.symm = (compacts.equiv f).symm :=
+rfl
+
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
-lemma equiv_to_fun_val (f : α ≃ₜ β) (K : compacts α) :
-  (compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
-congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1
+lemma coe_equiv_apply_eq_preimage (f : α ≃ₜ β) (K : compacts α) :
+  (compacts.equiv f K : set β) = f.symm ⁻¹' (K : set α) :=
+f.to_equiv.image_eq_preimage K
 
 /-- The product of two `compacts`, as a `compacts` in the product space. -/
 protected def prod (K : compacts α) (L : compacts β) : compacts (α × β) :=
@@ -225,6 +240,26 @@ order_top.lift (coe : _ → set α) (λ _ _, id) rfl
 @[simp] lemma coe_top [compact_space α] [nonempty α] :
   (↑(⊤ : positive_compacts α) : set α) = univ := rfl
 
+/-- The image of a positive compact set under a continuous open map. -/
+protected def map (f : α → β) (hf : continuous f) (hf' : is_open_map f) (K : positive_compacts α) :
+  positive_compacts β :=
+{ interior_nonempty' :=
+    (K.interior_nonempty'.image _).mono (hf'.image_interior_subset K.to_compacts),
+  ..K.map f hf }
+
+@[simp, norm_cast] lemma coe_map {f : α → β} (hf : continuous f) (hf' : is_open_map f)
+  (s : positive_compacts α) :
+  (s.map f hf hf' : set β) = f '' s := rfl
+
+@[simp] lemma map_id (K : positive_compacts α) : K.map id continuous_id is_open_map.id = K :=
+positive_compacts.ext $ set.image_id _
+
+lemma map_comp (f : β → γ) (g : α → β) (hf : continuous f) (hg : continuous g)
+  (hf' : is_open_map f) (hg' : is_open_map g)
+  (K : positive_compacts α) :
+  K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
+positive_compacts.ext $ set.image_comp _ _ _
+
 lemma _root_.exists_positive_compacts_subset [locally_compact_space α] {U : set α} (ho : is_open U)
   (hn : U.nonempty) : ∃ K : positive_compacts α, ↑K ⊆ U :=
 let ⟨x, hx⟩ := hn, ⟨K, hKc, hxK, hKU⟩ := exists_compact_subset ho hx in ⟨⟨⟨K, hKc⟩, ⟨x, hxK⟩⟩, hKU⟩
@@ -322,8 +357,17 @@ instance : inhabited (compact_opens α) := ⟨⊥⟩
   compact_opens β :=
 ⟨s.to_compacts.map f hf, hf' _ s.is_open⟩
 
-@[simp] lemma coe_map {f : α → β} (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) :
-  (s.map f hf hf' : set β) = f '' s := rfl
+@[simp, norm_cast] lemma coe_map {f : α → β} (hf : continuous f) (hf' : is_open_map f)
+  (s : compact_opens α) : (s.map f hf hf' : set β) = f '' s := rfl
+
+@[simp] lemma map_id (K : compact_opens α) : K.map id continuous_id is_open_map.id = K :=
+compact_opens.ext $ set.image_id _
+
+lemma map_comp (f : β → γ) (g : α → β) (hf : continuous f) (hg : continuous g)
+  (hf' : is_open_map f) (hg' : is_open_map g)
+  (K : compact_opens α) :
+  K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
+compact_opens.ext $ set.image_comp _ _ _
 
 /-- The product of two `compact_opens`, as a `compact_opens` in the product space. -/
 protected def prod (K : compact_opens α) (L : compact_opens β) :

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -143,7 +143,11 @@ theorem coe_bot : (↑(⊥ : Compacts α) : Set α) = ∅ :=
 #print TopologicalSpace.Compacts.coe_finset_sup /-
 @[simp]
 theorem coe_finset_sup {ι : Type _} {s : Finset ι} {f : ι → Compacts α} :
-    (↑(s.sup f) : Set α) = s.sup fun i => f i := by classical
+    (↑(s.sup f) : Set α) = s.sup fun i => f i := by
+  classical
+  refine' Finset.induction_on s rfl fun a s _ h => _
+  simp_rw [Finset.sup_insert, coe_sup, sup_eq_union]
+  congr
 #align topological_space.compacts.coe_finset_sup TopologicalSpace.Compacts.coe_finset_sup
 -/
 
Diff
@@ -143,11 +143,7 @@ theorem coe_bot : (↑(⊥ : Compacts α) : Set α) = ∅ :=
 #print TopologicalSpace.Compacts.coe_finset_sup /-
 @[simp]
 theorem coe_finset_sup {ι : Type _} {s : Finset ι} {f : ι → Compacts α} :
-    (↑(s.sup f) : Set α) = s.sup fun i => f i := by
-  classical
-  refine' Finset.induction_on s rfl fun a s _ h => _
-  simp_rw [Finset.sup_insert, coe_sup, sup_eq_union]
-  congr
+    (↑(s.sup f) : Set α) = s.sup fun i => f i := by classical
 #align topological_space.compacts.coe_finset_sup TopologicalSpace.Compacts.coe_finset_sup
 -/
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Floris van Doorn. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yaël Dillies
 -/
-import Mathbin.Topology.Sets.Closeds
-import Mathbin.Topology.QuasiSeparated
+import Topology.Sets.Closeds
+import Topology.QuasiSeparated
 
 #align_import topology.sets.compacts from "leanprover-community/mathlib"@"8c1b484d6a214e059531e22f1be9898ed6c1fd47"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Floris van Doorn. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yaël Dillies
-
-! This file was ported from Lean 3 source module topology.sets.compacts
-! leanprover-community/mathlib commit 8c1b484d6a214e059531e22f1be9898ed6c1fd47
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Topology.Sets.Closeds
 import Mathbin.Topology.QuasiSeparated
 
+#align_import topology.sets.compacts from "leanprover-community/mathlib"@"8c1b484d6a214e059531e22f1be9898ed6c1fd47"
+
 /-!
 # Compact sets
 
Diff
@@ -115,15 +115,19 @@ instance [CompactSpace α] : BoundedOrder (Compacts α) :=
 instance : Inhabited (Compacts α) :=
   ⟨⊥⟩
 
+#print TopologicalSpace.Compacts.coe_sup /-
 @[simp]
 theorem coe_sup (s t : Compacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
 #align topological_space.compacts.coe_sup TopologicalSpace.Compacts.coe_sup
+-/
 
+#print TopologicalSpace.Compacts.coe_inf /-
 @[simp]
 theorem coe_inf [T2Space α] (s t : Compacts α) : (↑(s ⊓ t) : Set α) = s ∩ t :=
   rfl
 #align topological_space.compacts.coe_inf TopologicalSpace.Compacts.coe_inf
+-/
 
 #print TopologicalSpace.Compacts.coe_top /-
 @[simp]
@@ -139,6 +143,7 @@ theorem coe_bot : (↑(⊥ : Compacts α) : Set α) = ∅ :=
 #align topological_space.compacts.coe_bot TopologicalSpace.Compacts.coe_bot
 -/
 
+#print TopologicalSpace.Compacts.coe_finset_sup /-
 @[simp]
 theorem coe_finset_sup {ι : Type _} {s : Finset ι} {f : ι → Compacts α} :
     (↑(s.sup f) : Set α) = s.sup fun i => f i := by
@@ -147,6 +152,7 @@ theorem coe_finset_sup {ι : Type _} {s : Finset ι} {f : ι → Compacts α} :
   simp_rw [Finset.sup_insert, coe_sup, sup_eq_union]
   congr
 #align topological_space.compacts.coe_finset_sup TopologicalSpace.Compacts.coe_finset_sup
+-/
 
 #print TopologicalSpace.Compacts.map /-
 /-- The image of a compact set under a continuous function. -/
@@ -155,10 +161,12 @@ protected def map (f : α → β) (hf : Continuous f) (K : Compacts α) : Compac
 #align topological_space.compacts.map TopologicalSpace.Compacts.map
 -/
 
+#print TopologicalSpace.Compacts.coe_map /-
 @[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (s : Compacts α) : (s.map f hf : Set β) = f '' s :=
   rfl
 #align topological_space.compacts.coe_map TopologicalSpace.Compacts.coe_map
+-/
 
 #print TopologicalSpace.Compacts.map_id /-
 @[simp]
@@ -167,10 +175,12 @@ theorem map_id (K : Compacts α) : K.map id continuous_id = K :=
 #align topological_space.compacts.map_id TopologicalSpace.Compacts.map_id
 -/
 
+#print TopologicalSpace.Compacts.map_comp /-
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (K : Compacts α) :
     K.map (f ∘ g) (hf.comp hg) = (K.map g hg).map f hf :=
   Compacts.ext <| Set.image_comp _ _ _
 #align topological_space.compacts.map_comp TopologicalSpace.Compacts.map_comp
+-/
 
 #print TopologicalSpace.Compacts.equiv /-
 /-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
@@ -191,36 +201,46 @@ theorem equiv_refl : Compacts.equiv (Homeomorph.refl α) = Equiv.refl _ :=
 #align topological_space.compacts.equiv_refl TopologicalSpace.Compacts.equiv_refl
 -/
 
+#print TopologicalSpace.Compacts.equiv_trans /-
 @[simp]
 theorem equiv_trans (f : α ≃ₜ β) (g : β ≃ₜ γ) :
     Compacts.equiv (f.trans g) = (Compacts.equiv f).trans (Compacts.equiv g) :=
   Equiv.ext <| map_comp _ _ _ _
 #align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_trans
+-/
 
+#print TopologicalSpace.Compacts.equiv_symm /-
 @[simp]
 theorem equiv_symm (f : α ≃ₜ β) : Compacts.equiv f.symm = (Compacts.equiv f).symm :=
   rfl
 #align topological_space.compacts.equiv_symm TopologicalSpace.Compacts.equiv_symm
+-/
 
+#print TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage /-
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
 theorem coe_equiv_apply_eq_preimage (f : α ≃ₜ β) (K : Compacts α) :
     (Compacts.equiv f K : Set β) = f.symm ⁻¹' (K : Set α) :=
   f.toEquiv.image_eq_preimage K
 #align topological_space.compacts.coe_equiv_apply_eq_preimage TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print TopologicalSpace.Compacts.prod /-
 /-- The product of two `compacts`, as a `compacts` in the product space. -/
 protected def prod (K : Compacts α) (L : Compacts β) : Compacts (α × β)
     where
   carrier := K ×ˢ L
   is_compact' := IsCompact.prod K.2 L.2
 #align topological_space.compacts.prod TopologicalSpace.Compacts.prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print TopologicalSpace.Compacts.coe_prod /-
 @[simp]
 theorem coe_prod (K : Compacts α) (L : Compacts β) : (K.Prod L : Set (α × β)) = K ×ˢ L :=
   rfl
 #align topological_space.compacts.coe_prod TopologicalSpace.Compacts.coe_prod
+-/
 
 end Compacts
 
@@ -293,10 +313,12 @@ instance : SemilatticeSup (NonemptyCompacts α) :=
 instance [CompactSpace α] [Nonempty α] : OrderTop (NonemptyCompacts α) :=
   OrderTop.lift (coe : _ → Set α) (fun _ _ => id) rfl
 
+#print TopologicalSpace.NonemptyCompacts.coe_sup /-
 @[simp]
 theorem coe_sup (s t : NonemptyCompacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
 #align topological_space.nonempty_compacts.coe_sup TopologicalSpace.NonemptyCompacts.coe_sup
+-/
 
 #print TopologicalSpace.NonemptyCompacts.coe_top /-
 @[simp]
@@ -324,17 +346,21 @@ instance toNonempty {s : NonemptyCompacts α} : Nonempty s :=
 #align topological_space.nonempty_compacts.to_nonempty TopologicalSpace.NonemptyCompacts.toNonempty
 -/
 
+#print TopologicalSpace.NonemptyCompacts.prod /-
 /-- The product of two `nonempty_compacts`, as a `nonempty_compacts` in the product space. -/
 protected def prod (K : NonemptyCompacts α) (L : NonemptyCompacts β) : NonemptyCompacts (α × β) :=
   { K.toCompacts.Prod L.toCompacts with nonempty' := K.Nonempty.Prod L.Nonempty }
 #align topological_space.nonempty_compacts.prod TopologicalSpace.NonemptyCompacts.prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print TopologicalSpace.NonemptyCompacts.coe_prod /-
 @[simp]
 theorem coe_prod (K : NonemptyCompacts α) (L : NonemptyCompacts β) :
     (K.Prod L : Set (α × β)) = K ×ˢ L :=
   rfl
 #align topological_space.nonempty_compacts.coe_prod TopologicalSpace.NonemptyCompacts.coe_prod
+-/
 
 end NonemptyCompacts
 
@@ -416,10 +442,12 @@ instance : SemilatticeSup (PositiveCompacts α) :=
 instance [CompactSpace α] [Nonempty α] : OrderTop (PositiveCompacts α) :=
   OrderTop.lift (coe : _ → Set α) (fun _ _ => id) rfl
 
+#print TopologicalSpace.PositiveCompacts.coe_sup /-
 @[simp]
 theorem coe_sup (s t : PositiveCompacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
 #align topological_space.positive_compacts.coe_sup TopologicalSpace.PositiveCompacts.coe_sup
+-/
 
 #print TopologicalSpace.PositiveCompacts.coe_top /-
 @[simp]
@@ -438,11 +466,13 @@ protected def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (K : P
 #align topological_space.positive_compacts.map TopologicalSpace.PositiveCompacts.map
 -/
 
+#print TopologicalSpace.PositiveCompacts.coe_map /-
 @[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : PositiveCompacts α) :
     (s.map f hf hf' : Set β) = f '' s :=
   rfl
 #align topological_space.positive_compacts.coe_map TopologicalSpace.PositiveCompacts.coe_map
+-/
 
 #print TopologicalSpace.PositiveCompacts.map_id /-
 @[simp]
@@ -451,11 +481,13 @@ theorem map_id (K : PositiveCompacts α) : K.map id continuous_id IsOpenMap.id =
 #align topological_space.positive_compacts.map_id TopologicalSpace.PositiveCompacts.map_id
 -/
 
+#print TopologicalSpace.PositiveCompacts.map_comp /-
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
     (hg' : IsOpenMap g) (K : PositiveCompacts α) :
     K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
   PositiveCompacts.ext <| Set.image_comp _ _ _
 #align topological_space.positive_compacts.map_comp TopologicalSpace.PositiveCompacts.map_comp
+-/
 
 #print exists_positiveCompacts_subset /-
 theorem exists_positiveCompacts_subset [LocallyCompactSpace α] {U : Set α} (ho : IsOpen U)
@@ -476,6 +508,7 @@ instance nonempty' [LocallyCompactSpace α] [Nonempty α] : Nonempty (PositiveCo
 #align topological_space.positive_compacts.nonempty' TopologicalSpace.PositiveCompacts.nonempty'
 -/
 
+#print TopologicalSpace.PositiveCompacts.prod /-
 /-- The product of two `positive_compacts`, as a `positive_compacts` in the product space. -/
 protected def prod (K : PositiveCompacts α) (L : PositiveCompacts β) : PositiveCompacts (α × β) :=
   { K.toCompacts.Prod L.toCompacts with
@@ -484,13 +517,16 @@ protected def prod (K : PositiveCompacts α) (L : PositiveCompacts β) : Positiv
       simp only [compacts.carrier_eq_coe, compacts.coe_prod, interior_prod_eq]
       exact K.interior_nonempty.prod L.interior_nonempty }
 #align topological_space.positive_compacts.prod TopologicalSpace.PositiveCompacts.prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print TopologicalSpace.PositiveCompacts.coe_prod /-
 @[simp]
 theorem coe_prod (K : PositiveCompacts α) (L : PositiveCompacts β) :
     (K.Prod L : Set (α × β)) = K ×ˢ L :=
   rfl
 #align topological_space.positive_compacts.coe_prod TopologicalSpace.PositiveCompacts.coe_prod
+-/
 
 end PositiveCompacts
 
@@ -595,15 +631,19 @@ instance [T2Space α] [CompactSpace α] : BooleanAlgebra (CompactOpens α) :=
   SetLike.coe_injective.BooleanAlgebra _ (fun _ _ => rfl) (fun _ _ => rfl) rfl rfl (fun _ => rfl)
     fun _ _ => rfl
 
+#print TopologicalSpace.CompactOpens.coe_sup /-
 @[simp]
 theorem coe_sup (s t : CompactOpens α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
 #align topological_space.compact_opens.coe_sup TopologicalSpace.CompactOpens.coe_sup
+-/
 
+#print TopologicalSpace.CompactOpens.coe_inf /-
 @[simp]
 theorem coe_inf [T2Space α] (s t : CompactOpens α) : (↑(s ⊓ t) : Set α) = s ∩ t :=
   rfl
 #align topological_space.compact_opens.coe_inf TopologicalSpace.CompactOpens.coe_inf
+-/
 
 #print TopologicalSpace.CompactOpens.coe_top /-
 @[simp]
@@ -619,15 +659,19 @@ theorem coe_bot : (↑(⊥ : CompactOpens α) : Set α) = ∅ :=
 #align topological_space.compact_opens.coe_bot TopologicalSpace.CompactOpens.coe_bot
 -/
 
+#print TopologicalSpace.CompactOpens.coe_sdiff /-
 @[simp]
 theorem coe_sdiff [T2Space α] (s t : CompactOpens α) : (↑(s \ t) : Set α) = s \ t :=
   rfl
 #align topological_space.compact_opens.coe_sdiff TopologicalSpace.CompactOpens.coe_sdiff
+-/
 
+#print TopologicalSpace.CompactOpens.coe_compl /-
 @[simp]
 theorem coe_compl [T2Space α] [CompactSpace α] (s : CompactOpens α) : (↑(sᶜ) : Set α) = sᶜ :=
   rfl
 #align topological_space.compact_opens.coe_compl TopologicalSpace.CompactOpens.coe_compl
+-/
 
 instance : Inhabited (CompactOpens α) :=
   ⟨⊥⟩
@@ -640,11 +684,13 @@ def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpen
 #align topological_space.compact_opens.map TopologicalSpace.CompactOpens.map
 -/
 
+#print TopologicalSpace.CompactOpens.coe_map /-
 @[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
     (s.map f hf hf' : Set β) = f '' s :=
   rfl
 #align topological_space.compact_opens.coe_map TopologicalSpace.CompactOpens.coe_map
+-/
 
 #print TopologicalSpace.CompactOpens.map_id /-
 @[simp]
@@ -653,22 +699,28 @@ theorem map_id (K : CompactOpens α) : K.map id continuous_id IsOpenMap.id = K :
 #align topological_space.compact_opens.map_id TopologicalSpace.CompactOpens.map_id
 -/
 
+#print TopologicalSpace.CompactOpens.map_comp /-
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
     (hg' : IsOpenMap g) (K : CompactOpens α) :
     K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
   CompactOpens.ext <| Set.image_comp _ _ _
 #align topological_space.compact_opens.map_comp TopologicalSpace.CompactOpens.map_comp
+-/
 
+#print TopologicalSpace.CompactOpens.prod /-
 /-- The product of two `compact_opens`, as a `compact_opens` in the product space. -/
 protected def prod (K : CompactOpens α) (L : CompactOpens β) : CompactOpens (α × β) :=
   { K.toCompacts.Prod L.toCompacts with is_open' := K.IsOpen.Prod L.IsOpen }
 #align topological_space.compact_opens.prod TopologicalSpace.CompactOpens.prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print TopologicalSpace.CompactOpens.coe_prod /-
 @[simp]
 theorem coe_prod (K : CompactOpens α) (L : CompactOpens β) : (K.Prod L : Set (α × β)) = K ×ˢ L :=
   rfl
 #align topological_space.compact_opens.coe_prod TopologicalSpace.CompactOpens.coe_prod
+-/
 
 end CompactOpens
 
Diff
@@ -143,9 +143,9 @@ theorem coe_bot : (↑(⊥ : Compacts α) : Set α) = ∅ :=
 theorem coe_finset_sup {ι : Type _} {s : Finset ι} {f : ι → Compacts α} :
     (↑(s.sup f) : Set α) = s.sup fun i => f i := by
   classical
-    refine' Finset.induction_on s rfl fun a s _ h => _
-    simp_rw [Finset.sup_insert, coe_sup, sup_eq_union]
-    congr
+  refine' Finset.induction_on s rfl fun a s _ h => _
+  simp_rw [Finset.sup_insert, coe_sup, sup_eq_union]
+  congr
 #align topological_space.compacts.coe_finset_sup TopologicalSpace.Compacts.coe_finset_sup
 
 #print TopologicalSpace.Compacts.map /-
Diff
@@ -115,23 +115,11 @@ instance [CompactSpace α] : BoundedOrder (Compacts α) :=
 instance : Inhabited (Compacts α) :=
   ⟨⊥⟩
 
-/- warning: topological_space.compacts.coe_sup -> TopologicalSpace.Compacts.coe_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instSupCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_sup TopologicalSpace.Compacts.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : Compacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
 #align topological_space.compacts.coe_sup TopologicalSpace.Compacts.coe_sup
 
-/- warning: topological_space.compacts.coe_inf -> TopologicalSpace.Compacts.coe_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasInf.{u1} α _inst_1 _inst_4) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instInfCompacts.{u1} α _inst_1 _inst_4) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_inf TopologicalSpace.Compacts.coe_infₓ'. -/
 @[simp]
 theorem coe_inf [T2Space α] (s t : Compacts α) : (↑(s ⊓ t) : Set α) = s ∩ t :=
   rfl
@@ -151,12 +139,6 @@ theorem coe_bot : (↑(⊥ : Compacts α) : Set α) = ∅ :=
 #align topological_space.compacts.coe_bot TopologicalSpace.Compacts.coe_bot
 -/
 
-/- warning: topological_space.compacts.coe_finset_sup -> TopologicalSpace.Compacts.coe_finset_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {s : Finset.{u2} ι} {f : ι -> (TopologicalSpace.Compacts.{u1} α _inst_1)}, Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (Finset.sup.{u1, u2} (TopologicalSpace.Compacts.{u1} α _inst_1) ι (TopologicalSpace.Compacts.semilatticeSup.{u1} α _inst_1) (TopologicalSpace.Compacts.orderBot.{u1} α _inst_1) s f)) (Finset.sup.{u1, u2} (Set.{u1} α) ι (Lattice.toSemilatticeSup.{u1} (Set.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Set.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] {ι : Type.{u2}} {s : Finset.{u2} ι} {f : ι -> (TopologicalSpace.Compacts.{u1} α _inst_1)}, Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (Finset.sup.{u1, u2} (TopologicalSpace.Compacts.{u1} α _inst_1) ι (TopologicalSpace.Compacts.instSemilatticeSupCompacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instOrderBotCompactsToLEToPreorderToPartialOrderInstSemilatticeSupCompacts.{u1} α _inst_1) s f)) (Finset.sup.{u1, u2} (Set.{u1} α) ι (Lattice.toSemilatticeSup.{u1} (Set.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Set.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (SemilatticeSup.toPartialOrder.{u1} (Set.{u1} α) (Lattice.toSemilatticeSup.{u1} (Set.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Set.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s (fun (i : ι) => SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (f i)))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_finset_sup TopologicalSpace.Compacts.coe_finset_supₓ'. -/
 @[simp]
 theorem coe_finset_sup {ι : Type _} {s : Finset ι} {f : ι → Compacts α} :
     (↑(s.sup f) : Set α) = s.sup fun i => f i := by
@@ -173,12 +155,6 @@ protected def map (f : α → β) (hf : Continuous f) (K : Compacts α) : Compac
 #align topological_space.compacts.map TopologicalSpace.Compacts.map
 -/
 
-/- warning: topological_space.compacts.coe_map -> TopologicalSpace.Compacts.coe_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : α -> β} (hf : Continuous.{u1, u2} α β _inst_1 _inst_2 f) (s : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.Compacts.{u2} β _inst_2) β (TopologicalSpace.Compacts.setLike.{u2} β _inst_2)))) (TopologicalSpace.Compacts.map.{u1, u2} α β _inst_1 _inst_2 f hf s)) (Set.image.{u1, u2} α β f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} (hf : Continuous.{u2, u1} α β _inst_1 _inst_2 f) (s : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} β _inst_2) β (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} β _inst_2) (TopologicalSpace.Compacts.map.{u2, u1} α β _inst_1 _inst_2 f hf s)) (Set.image.{u2, u1} α β f (SetLike.coe.{u2, u2} (TopologicalSpace.Compacts.{u2} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u2} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_map TopologicalSpace.Compacts.coe_mapₓ'. -/
 @[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (s : Compacts α) : (s.map f hf : Set β) = f '' s :=
   rfl
@@ -191,12 +167,6 @@ theorem map_id (K : Compacts α) : K.map id continuous_id = K :=
 #align topological_space.compacts.map_id TopologicalSpace.Compacts.map_id
 -/
 
-/- warning: topological_space.compacts.map_comp -> TopologicalSpace.Compacts.map_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u2, u3} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u2} α β _inst_1 _inst_2 g) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u3} (TopologicalSpace.Compacts.{u3} γ _inst_3) (TopologicalSpace.Compacts.map.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) K) (TopologicalSpace.Compacts.map.{u2, u3} β γ _inst_2 _inst_3 f hf (TopologicalSpace.Compacts.map.{u1, u2} α β _inst_1 _inst_2 g hg K))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u3, u2} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u3} α β _inst_1 _inst_2 g) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (TopologicalSpace.Compacts.{u2} γ _inst_3) (TopologicalSpace.Compacts.map.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) K) (TopologicalSpace.Compacts.map.{u3, u2} β γ _inst_2 _inst_3 f hf (TopologicalSpace.Compacts.map.{u1, u3} α β _inst_1 _inst_2 g hg K))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.map_comp TopologicalSpace.Compacts.map_compₓ'. -/
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (K : Compacts α) :
     K.map (f ∘ g) (hf.comp hg) = (K.map g hg).map f hf :=
   Compacts.ext <| Set.image_comp _ _ _
@@ -221,47 +191,23 @@ theorem equiv_refl : Compacts.equiv (Homeomorph.refl α) = Equiv.refl _ :=
 #align topological_space.compacts.equiv_refl TopologicalSpace.Compacts.equiv_refl
 -/
 
-/- warning: topological_space.compacts.equiv_trans -> TopologicalSpace.Compacts.equiv_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2) (g : Homeomorph.{u2, u3} β γ _inst_2 _inst_3), Eq.{max 1 (max (succ u1) (succ u3)) (succ u3) (succ u1)} (Equiv.{succ u1, succ u3} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u3} γ _inst_3)) (TopologicalSpace.Compacts.equiv.{u1, u3} α γ _inst_1 _inst_3 (Homeomorph.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Equiv.trans.{succ u1, succ u2, succ u3} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.{u3} γ _inst_3) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f) (TopologicalSpace.Compacts.equiv.{u2, u3} β γ _inst_2 _inst_3 g))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : TopologicalSpace.{u3} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : Homeomorph.{u3, u2} α β _inst_1 _inst_2) (g : Homeomorph.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (Equiv.{succ u3, succ u1} (TopologicalSpace.Compacts.{u3} α _inst_1) (TopologicalSpace.Compacts.{u1} γ _inst_3)) (TopologicalSpace.Compacts.equiv.{u3, u1} α γ _inst_1 _inst_3 (Homeomorph.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f g)) (Equiv.trans.{succ u3, succ u2, succ u1} (TopologicalSpace.Compacts.{u3} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.{u1} γ _inst_3) (TopologicalSpace.Compacts.equiv.{u3, u2} α β _inst_1 _inst_2 f) (TopologicalSpace.Compacts.equiv.{u2, u1} β γ _inst_2 _inst_3 g))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_transₓ'. -/
 @[simp]
 theorem equiv_trans (f : α ≃ₜ β) (g : β ≃ₜ γ) :
     Compacts.equiv (f.trans g) = (Compacts.equiv f).trans (Compacts.equiv g) :=
   Equiv.ext <| map_comp _ _ _ _
 #align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_trans
 
-/- warning: topological_space.compacts.equiv_symm -> TopologicalSpace.Compacts.equiv_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2), Eq.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2)} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.{u1} α _inst_1)) (TopologicalSpace.Compacts.equiv.{u2, u1} β α _inst_2 _inst_1 (Homeomorph.symm.{u1, u2} α β _inst_1 _inst_2 f)) (Equiv.symm.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} β _inst_2) (TopologicalSpace.Compacts.{u2} α _inst_1)) (TopologicalSpace.Compacts.equiv.{u1, u2} β α _inst_2 _inst_1 (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (Equiv.symm.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.equiv_symm TopologicalSpace.Compacts.equiv_symmₓ'. -/
 @[simp]
 theorem equiv_symm (f : α ≃ₜ β) : Compacts.equiv f.symm = (Compacts.equiv f).symm :=
   rfl
 #align topological_space.compacts.equiv_symm TopologicalSpace.Compacts.equiv_symm
 
-/- warning: topological_space.compacts.coe_equiv_apply_eq_preimage -> TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.Compacts.{u2} β _inst_2) β (TopologicalSpace.Compacts.setLike.{u2} β _inst_2)))) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (fun (_x : Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) => (TopologicalSpace.Compacts.{u1} α _inst_1) -> (TopologicalSpace.Compacts.{u2} β _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u2, u1} β α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_2 _inst_1) (fun (_x : Homeomorph.{u2, u1} β α _inst_2 _inst_1) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (Homeomorph.symm.{u1, u2} α β _inst_1 _inst_2 f)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) K))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) K) β (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.{u2} α _inst_1) (fun (_x : TopologicalSpace.Compacts.{u2} α _inst_1) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u1, u2} β α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_2 _inst_1))) (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (SetLike.coe.{u2, u2} (TopologicalSpace.Compacts.{u2} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u2} α _inst_1) K))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_equiv_apply_eq_preimage TopologicalSpace.Compacts.coe_equiv_apply_eq_preimageₓ'. -/
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
 theorem coe_equiv_apply_eq_preimage (f : α ≃ₜ β) (K : Compacts α) :
     (Compacts.equiv f K : Set β) = f.symm ⁻¹' (K : Set α) :=
   f.toEquiv.image_eq_preimage K
 #align topological_space.compacts.coe_equiv_apply_eq_preimage TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage
 
-/- warning: topological_space.compacts.prod -> TopologicalSpace.Compacts.prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.Compacts.{u1} α _inst_1) -> (TopologicalSpace.Compacts.{u2} β _inst_2) -> (TopologicalSpace.Compacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.Compacts.{u1} α _inst_1) -> (TopologicalSpace.Compacts.{u2} β _inst_2) -> (TopologicalSpace.Compacts.{max u2 u1} (Prod.{u1, u2} α β) (instTopologicalSpaceProd.{u1, u2} α β _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.prod TopologicalSpace.Compacts.prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /-- The product of two `compacts`, as a `compacts` in the product space. -/
 protected def prod (K : Compacts α) (L : Compacts β) : Compacts (α × β)
@@ -270,12 +216,6 @@ protected def prod (K : Compacts α) (L : Compacts β) : Compacts (α × β)
   is_compact' := IsCompact.prod K.2 L.2
 #align topological_space.compacts.prod TopologicalSpace.Compacts.prod
 
-/- warning: topological_space.compacts.coe_prod -> TopologicalSpace.Compacts.coe_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (K : TopologicalSpace.Compacts.{u1} α _inst_1) (L : TopologicalSpace.Compacts.{u2} β _inst_2), Eq.{succ (max u1 u2)} (Set.{max u1 u2} (Prod.{u1, u2} α β)) ((fun (a : Type.{max u1 u2}) (b : Type.{max u1 u2}) [self : HasLiftT.{succ (max u1 u2), succ (max u1 u2)} a b] => self.0) (TopologicalSpace.Compacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (HasLiftT.mk.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.Compacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (CoeTCₓ.coe.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.Compacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (SetLike.Set.hasCoeT.{max u1 u2, max u1 u2} (TopologicalSpace.Compacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Prod.{u1, u2} α β) (TopologicalSpace.Compacts.setLike.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))))) (TopologicalSpace.Compacts.prod.{u1, u2} α β _inst_1 _inst_2 K L)) (Set.prod.{u1, u2} α β ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) K) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.Compacts.{u2} β _inst_2) β (TopologicalSpace.Compacts.setLike.{u2} β _inst_2)))) L))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (K : TopologicalSpace.Compacts.{u2} α _inst_1) (L : TopologicalSpace.Compacts.{u1} β _inst_2), Eq.{max (succ u2) (succ u1)} (Set.{max u2 u1} (Prod.{u2, u1} α β)) (SetLike.coe.{max u2 u1, max u2 u1} (TopologicalSpace.Compacts.{max u1 u2} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (Prod.{u2, u1} α β) (TopologicalSpace.Compacts.instSetLikeCompacts.{max u2 u1} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (TopologicalSpace.Compacts.prod.{u2, u1} α β _inst_1 _inst_2 K L)) (Set.prod.{u2, u1} α β (SetLike.coe.{u2, u2} (TopologicalSpace.Compacts.{u2} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u2} α _inst_1) K) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} β _inst_2) β (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} β _inst_2) L))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_prod TopologicalSpace.Compacts.coe_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
 theorem coe_prod (K : Compacts α) (L : Compacts β) : (K.Prod L : Set (α × β)) = K ×ˢ L :=
@@ -353,12 +293,6 @@ instance : SemilatticeSup (NonemptyCompacts α) :=
 instance [CompactSpace α] [Nonempty α] : OrderTop (NonemptyCompacts α) :=
   OrderTop.lift (coe : _ → Set α) (fun _ _ => id) rfl
 
-/- warning: topological_space.nonempty_compacts.coe_sup -> TopologicalSpace.NonemptyCompacts.coe_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (t : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (TopologicalSpace.NonemptyCompacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (t : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (TopologicalSpace.NonemptyCompacts.instSupNonemptyCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align topological_space.nonempty_compacts.coe_sup TopologicalSpace.NonemptyCompacts.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : NonemptyCompacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
@@ -390,23 +324,11 @@ instance toNonempty {s : NonemptyCompacts α} : Nonempty s :=
 #align topological_space.nonempty_compacts.to_nonempty TopologicalSpace.NonemptyCompacts.toNonempty
 -/
 
-/- warning: topological_space.nonempty_compacts.prod -> TopologicalSpace.NonemptyCompacts.prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) -> (TopologicalSpace.NonemptyCompacts.{u2} β _inst_2) -> (TopologicalSpace.NonemptyCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) -> (TopologicalSpace.NonemptyCompacts.{u2} β _inst_2) -> (TopologicalSpace.NonemptyCompacts.{max u2 u1} (Prod.{u1, u2} α β) (instTopologicalSpaceProd.{u1, u2} α β _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align topological_space.nonempty_compacts.prod TopologicalSpace.NonemptyCompacts.prodₓ'. -/
 /-- The product of two `nonempty_compacts`, as a `nonempty_compacts` in the product space. -/
 protected def prod (K : NonemptyCompacts α) (L : NonemptyCompacts β) : NonemptyCompacts (α × β) :=
   { K.toCompacts.Prod L.toCompacts with nonempty' := K.Nonempty.Prod L.Nonempty }
 #align topological_space.nonempty_compacts.prod TopologicalSpace.NonemptyCompacts.prod
 
-/- warning: topological_space.nonempty_compacts.coe_prod -> TopologicalSpace.NonemptyCompacts.coe_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (K : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (L : TopologicalSpace.NonemptyCompacts.{u2} β _inst_2), Eq.{succ (max u1 u2)} (Set.{max u1 u2} (Prod.{u1, u2} α β)) ((fun (a : Type.{max u1 u2}) (b : Type.{max u1 u2}) [self : HasLiftT.{succ (max u1 u2), succ (max u1 u2)} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (HasLiftT.mk.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.NonemptyCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (CoeTCₓ.coe.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.NonemptyCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (SetLike.Set.hasCoeT.{max u1 u2, max u1 u2} (TopologicalSpace.NonemptyCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Prod.{u1, u2} α β) (TopologicalSpace.NonemptyCompacts.setLike.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))))) (TopologicalSpace.NonemptyCompacts.prod.{u1, u2} α β _inst_1 _inst_2 K L)) (Set.prod.{u1, u2} α β ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) K) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.NonemptyCompacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.NonemptyCompacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.NonemptyCompacts.{u2} β _inst_2) β (TopologicalSpace.NonemptyCompacts.setLike.{u2} β _inst_2)))) L))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (K : TopologicalSpace.NonemptyCompacts.{u2} α _inst_1) (L : TopologicalSpace.NonemptyCompacts.{u1} β _inst_2), Eq.{max (succ u2) (succ u1)} (Set.{max u2 u1} (Prod.{u2, u1} α β)) (SetLike.coe.{max u2 u1, max u2 u1} (TopologicalSpace.NonemptyCompacts.{max u1 u2} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (Prod.{u2, u1} α β) (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{max u2 u1} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (TopologicalSpace.NonemptyCompacts.prod.{u2, u1} α β _inst_1 _inst_2 K L)) (Set.prod.{u2, u1} α β (SetLike.coe.{u2, u2} (TopologicalSpace.NonemptyCompacts.{u2} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u2} α _inst_1) K) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} β _inst_2) β (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} β _inst_2) L))
-Case conversion may be inaccurate. Consider using '#align topological_space.nonempty_compacts.coe_prod TopologicalSpace.NonemptyCompacts.coe_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
 theorem coe_prod (K : NonemptyCompacts α) (L : NonemptyCompacts β) :
@@ -494,12 +416,6 @@ instance : SemilatticeSup (PositiveCompacts α) :=
 instance [CompactSpace α] [Nonempty α] : OrderTop (PositiveCompacts α) :=
   OrderTop.lift (coe : _ → Set α) (fun _ _ => id) rfl
 
-/- warning: topological_space.positive_compacts.coe_sup -> TopologicalSpace.PositiveCompacts.coe_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (t : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (TopologicalSpace.PositiveCompacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (t : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (TopologicalSpace.PositiveCompacts.instSupPositiveCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.coe_sup TopologicalSpace.PositiveCompacts.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : PositiveCompacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
@@ -522,12 +438,6 @@ protected def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (K : P
 #align topological_space.positive_compacts.map TopologicalSpace.PositiveCompacts.map
 -/
 
-/- warning: topological_space.positive_compacts.coe_map -> TopologicalSpace.PositiveCompacts.coe_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : α -> β} (hf : Continuous.{u1, u2} α β _inst_1 _inst_2 f) (hf' : IsOpenMap.{u1, u2} α β _inst_1 _inst_2 f) (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) β (TopologicalSpace.PositiveCompacts.setLike.{u2} β _inst_2)))) (TopologicalSpace.PositiveCompacts.map.{u1, u2} α β _inst_1 _inst_2 f hf hf' s)) (Set.image.{u1, u2} α β f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} (hf : Continuous.{u2, u1} α β _inst_1 _inst_2 f) (hf' : IsOpenMap.{u2, u1} α β _inst_1 _inst_2 f) (s : TopologicalSpace.PositiveCompacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} β _inst_2) β (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} β _inst_2) (TopologicalSpace.PositiveCompacts.map.{u2, u1} α β _inst_1 _inst_2 f hf hf' s)) (Set.image.{u2, u1} α β f (SetLike.coe.{u2, u2} (TopologicalSpace.PositiveCompacts.{u2} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u2} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.coe_map TopologicalSpace.PositiveCompacts.coe_mapₓ'. -/
 @[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : PositiveCompacts α) :
     (s.map f hf hf' : Set β) = f '' s :=
@@ -541,12 +451,6 @@ theorem map_id (K : PositiveCompacts α) : K.map id continuous_id IsOpenMap.id =
 #align topological_space.positive_compacts.map_id TopologicalSpace.PositiveCompacts.map_id
 -/
 
-/- warning: topological_space.positive_compacts.map_comp -> TopologicalSpace.PositiveCompacts.map_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u2, u3} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u2} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u2, u3} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u2} α β _inst_1 _inst_2 g) (K : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u3} (TopologicalSpace.PositiveCompacts.{u3} γ _inst_3) (TopologicalSpace.PositiveCompacts.map.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.PositiveCompacts.map.{u2, u3} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.PositiveCompacts.map.{u1, u2} α β _inst_1 _inst_2 g hg hg' K))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u3, u2} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u3} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u3, u2} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u3} α β _inst_1 _inst_2 g) (K : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u2} (TopologicalSpace.PositiveCompacts.{u2} γ _inst_3) (TopologicalSpace.PositiveCompacts.map.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.PositiveCompacts.map.{u3, u2} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.PositiveCompacts.map.{u1, u3} α β _inst_1 _inst_2 g hg hg' K))
-Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.map_comp TopologicalSpace.PositiveCompacts.map_compₓ'. -/
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
     (hg' : IsOpenMap g) (K : PositiveCompacts α) :
     K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
@@ -572,12 +476,6 @@ instance nonempty' [LocallyCompactSpace α] [Nonempty α] : Nonempty (PositiveCo
 #align topological_space.positive_compacts.nonempty' TopologicalSpace.PositiveCompacts.nonempty'
 -/
 
-/- warning: topological_space.positive_compacts.prod -> TopologicalSpace.PositiveCompacts.prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) -> (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) -> (TopologicalSpace.PositiveCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) -> (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) -> (TopologicalSpace.PositiveCompacts.{max u2 u1} (Prod.{u1, u2} α β) (instTopologicalSpaceProd.{u1, u2} α β _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.prod TopologicalSpace.PositiveCompacts.prodₓ'. -/
 /-- The product of two `positive_compacts`, as a `positive_compacts` in the product space. -/
 protected def prod (K : PositiveCompacts α) (L : PositiveCompacts β) : PositiveCompacts (α × β) :=
   { K.toCompacts.Prod L.toCompacts with
@@ -587,12 +485,6 @@ protected def prod (K : PositiveCompacts α) (L : PositiveCompacts β) : Positiv
       exact K.interior_nonempty.prod L.interior_nonempty }
 #align topological_space.positive_compacts.prod TopologicalSpace.PositiveCompacts.prod
 
-/- warning: topological_space.positive_compacts.coe_prod -> TopologicalSpace.PositiveCompacts.coe_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (K : TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (L : TopologicalSpace.PositiveCompacts.{u2} β _inst_2), Eq.{succ (max u1 u2)} (Set.{max u1 u2} (Prod.{u1, u2} α β)) ((fun (a : Type.{max u1 u2}) (b : Type.{max u1 u2}) [self : HasLiftT.{succ (max u1 u2), succ (max u1 u2)} a b] => self.0) (TopologicalSpace.PositiveCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (HasLiftT.mk.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.PositiveCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (CoeTCₓ.coe.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.PositiveCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (SetLike.Set.hasCoeT.{max u1 u2, max u1 u2} (TopologicalSpace.PositiveCompacts.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Prod.{u1, u2} α β) (TopologicalSpace.PositiveCompacts.setLike.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))))) (TopologicalSpace.PositiveCompacts.prod.{u1, u2} α β _inst_1 _inst_2 K L)) (Set.prod.{u1, u2} α β ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) K) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) β (TopologicalSpace.PositiveCompacts.setLike.{u2} β _inst_2)))) L))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (K : TopologicalSpace.PositiveCompacts.{u2} α _inst_1) (L : TopologicalSpace.PositiveCompacts.{u1} β _inst_2), Eq.{max (succ u2) (succ u1)} (Set.{max u2 u1} (Prod.{u2, u1} α β)) (SetLike.coe.{max u2 u1, max u2 u1} (TopologicalSpace.PositiveCompacts.{max u1 u2} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (Prod.{u2, u1} α β) (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{max u2 u1} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (TopologicalSpace.PositiveCompacts.prod.{u2, u1} α β _inst_1 _inst_2 K L)) (Set.prod.{u2, u1} α β (SetLike.coe.{u2, u2} (TopologicalSpace.PositiveCompacts.{u2} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u2} α _inst_1) K) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} β _inst_2) β (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} β _inst_2) L))
-Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.coe_prod TopologicalSpace.PositiveCompacts.coe_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
 theorem coe_prod (K : PositiveCompacts α) (L : PositiveCompacts β) :
@@ -703,23 +595,11 @@ instance [T2Space α] [CompactSpace α] : BooleanAlgebra (CompactOpens α) :=
   SetLike.coe_injective.BooleanAlgebra _ (fun _ _ => rfl) (fun _ _ => rfl) rfl rfl (fun _ => rfl)
     fun _ _ => rfl
 
-/- warning: topological_space.compact_opens.coe_sup -> TopologicalSpace.CompactOpens.coe_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instSupCompactOpens.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_sup TopologicalSpace.CompactOpens.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : CompactOpens α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
   rfl
 #align topological_space.compact_opens.coe_sup TopologicalSpace.CompactOpens.coe_sup
 
-/- warning: topological_space.compact_opens.coe_inf -> TopologicalSpace.CompactOpens.coe_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasInf.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_4)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instInfCompactOpens.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_4)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_inf TopologicalSpace.CompactOpens.coe_infₓ'. -/
 @[simp]
 theorem coe_inf [T2Space α] (s t : CompactOpens α) : (↑(s ⊓ t) : Set α) = s ∩ t :=
   rfl
@@ -739,23 +619,11 @@ theorem coe_bot : (↑(⊥ : CompactOpens α) : Set α) = ∅ :=
 #align topological_space.compact_opens.coe_bot TopologicalSpace.CompactOpens.coe_bot
 -/
 
-/- warning: topological_space.compact_opens.coe_sdiff -> TopologicalSpace.CompactOpens.coe_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (SDiff.sdiff.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasSdiff.{u1} α _inst_1 _inst_4) s t)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (SDiff.sdiff.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instSDiffCompactOpens.{u1} α _inst_1 _inst_4) s t)) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_sdiff TopologicalSpace.CompactOpens.coe_sdiffₓ'. -/
 @[simp]
 theorem coe_sdiff [T2Space α] (s t : CompactOpens α) : (↑(s \ t) : Set α) = s \ t :=
   rfl
 #align topological_space.compact_opens.coe_sdiff TopologicalSpace.CompactOpens.coe_sdiff
 
-/- warning: topological_space.compact_opens.coe_compl -> TopologicalSpace.CompactOpens.coe_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] [_inst_5 : CompactSpace.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (HasCompl.compl.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasCompl.{u1} α _inst_1 _inst_4 _inst_5) s)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] [_inst_5 : CompactSpace.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (HasCompl.compl.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instHasComplCompactOpens.{u1} α _inst_1 _inst_4 _inst_5) s)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_compl TopologicalSpace.CompactOpens.coe_complₓ'. -/
 @[simp]
 theorem coe_compl [T2Space α] [CompactSpace α] (s : CompactOpens α) : (↑(sᶜ) : Set α) = sᶜ :=
   rfl
@@ -772,12 +640,6 @@ def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpen
 #align topological_space.compact_opens.map TopologicalSpace.CompactOpens.map
 -/
 
-/- warning: topological_space.compact_opens.coe_map -> TopologicalSpace.CompactOpens.coe_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : α -> β} (hf : Continuous.{u1, u2} α β _inst_1 _inst_2 f) (hf' : IsOpenMap.{u1, u2} α β _inst_1 _inst_2 f) (s : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.CompactOpens.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.CompactOpens.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.CompactOpens.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.CompactOpens.{u2} β _inst_2) β (TopologicalSpace.CompactOpens.setLike.{u2} β _inst_2)))) (TopologicalSpace.CompactOpens.map.{u1, u2} α β _inst_1 _inst_2 f hf hf' s)) (Set.image.{u1, u2} α β f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} (hf : Continuous.{u2, u1} α β _inst_1 _inst_2 f) (hf' : IsOpenMap.{u2, u1} α β _inst_1 _inst_2 f) (s : TopologicalSpace.CompactOpens.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} β _inst_2) β (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} β _inst_2) (TopologicalSpace.CompactOpens.map.{u2, u1} α β _inst_1 _inst_2 f hf hf' s)) (Set.image.{u2, u1} α β f (SetLike.coe.{u2, u2} (TopologicalSpace.CompactOpens.{u2} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u2} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_map TopologicalSpace.CompactOpens.coe_mapₓ'. -/
 @[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
     (s.map f hf hf' : Set β) = f '' s :=
@@ -791,35 +653,17 @@ theorem map_id (K : CompactOpens α) : K.map id continuous_id IsOpenMap.id = K :
 #align topological_space.compact_opens.map_id TopologicalSpace.CompactOpens.map_id
 -/
 
-/- warning: topological_space.compact_opens.map_comp -> TopologicalSpace.CompactOpens.map_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u2, u3} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u2} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u2, u3} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u2} α β _inst_1 _inst_2 g) (K : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u3} (TopologicalSpace.CompactOpens.{u3} γ _inst_3) (TopologicalSpace.CompactOpens.map.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.CompactOpens.map.{u2, u3} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.CompactOpens.map.{u1, u2} α β _inst_1 _inst_2 g hg hg' K))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u3, u2} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u3} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u3, u2} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u3} α β _inst_1 _inst_2 g) (K : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u2} (TopologicalSpace.CompactOpens.{u2} γ _inst_3) (TopologicalSpace.CompactOpens.map.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.CompactOpens.map.{u3, u2} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.CompactOpens.map.{u1, u3} α β _inst_1 _inst_2 g hg hg' K))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.map_comp TopologicalSpace.CompactOpens.map_compₓ'. -/
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
     (hg' : IsOpenMap g) (K : CompactOpens α) :
     K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
   CompactOpens.ext <| Set.image_comp _ _ _
 #align topological_space.compact_opens.map_comp TopologicalSpace.CompactOpens.map_comp
 
-/- warning: topological_space.compact_opens.prod -> TopologicalSpace.CompactOpens.prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.CompactOpens.{u1} α _inst_1) -> (TopologicalSpace.CompactOpens.{u2} β _inst_2) -> (TopologicalSpace.CompactOpens.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.CompactOpens.{u1} α _inst_1) -> (TopologicalSpace.CompactOpens.{u2} β _inst_2) -> (TopologicalSpace.CompactOpens.{max u2 u1} (Prod.{u1, u2} α β) (instTopologicalSpaceProd.{u1, u2} α β _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.prod TopologicalSpace.CompactOpens.prodₓ'. -/
 /-- The product of two `compact_opens`, as a `compact_opens` in the product space. -/
 protected def prod (K : CompactOpens α) (L : CompactOpens β) : CompactOpens (α × β) :=
   { K.toCompacts.Prod L.toCompacts with is_open' := K.IsOpen.Prod L.IsOpen }
 #align topological_space.compact_opens.prod TopologicalSpace.CompactOpens.prod
 
-/- warning: topological_space.compact_opens.coe_prod -> TopologicalSpace.CompactOpens.coe_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (K : TopologicalSpace.CompactOpens.{u1} α _inst_1) (L : TopologicalSpace.CompactOpens.{u2} β _inst_2), Eq.{succ (max u1 u2)} (Set.{max u1 u2} (Prod.{u1, u2} α β)) ((fun (a : Type.{max u1 u2}) (b : Type.{max u1 u2}) [self : HasLiftT.{succ (max u1 u2), succ (max u1 u2)} a b] => self.0) (TopologicalSpace.CompactOpens.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (HasLiftT.mk.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.CompactOpens.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (CoeTCₓ.coe.{succ (max u1 u2), succ (max u1 u2)} (TopologicalSpace.CompactOpens.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Set.{max u1 u2} (Prod.{u1, u2} α β)) (SetLike.Set.hasCoeT.{max u1 u2, max u1 u2} (TopologicalSpace.CompactOpens.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2)) (Prod.{u1, u2} α β) (TopologicalSpace.CompactOpens.setLike.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))))) (TopologicalSpace.CompactOpens.prod.{u1, u2} α β _inst_1 _inst_2 K L)) (Set.prod.{u1, u2} α β ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) K) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.CompactOpens.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.CompactOpens.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.CompactOpens.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.CompactOpens.{u2} β _inst_2) β (TopologicalSpace.CompactOpens.setLike.{u2} β _inst_2)))) L))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (K : TopologicalSpace.CompactOpens.{u2} α _inst_1) (L : TopologicalSpace.CompactOpens.{u1} β _inst_2), Eq.{max (succ u2) (succ u1)} (Set.{max u2 u1} (Prod.{u2, u1} α β)) (SetLike.coe.{max u2 u1, max u2 u1} (TopologicalSpace.CompactOpens.{max u1 u2} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (Prod.{u2, u1} α β) (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{max u2 u1} (Prod.{u2, u1} α β) (instTopologicalSpaceProd.{u2, u1} α β _inst_1 _inst_2)) (TopologicalSpace.CompactOpens.prod.{u2, u1} α β _inst_1 _inst_2 K L)) (Set.prod.{u2, u1} α β (SetLike.coe.{u2, u2} (TopologicalSpace.CompactOpens.{u2} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u2} α _inst_1) K) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} β _inst_2) β (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} β _inst_2) L))
-Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_prod TopologicalSpace.CompactOpens.coe_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 @[simp]
 theorem coe_prod (K : CompactOpens α) (L : CompactOpens β) : (K.Prod L : Set (α × β)) = K ×ˢ L :=
Diff
@@ -53,10 +53,7 @@ variable {α}
 
 instance : SetLike (Compacts α) α where
   coe := Compacts.carrier
-  coe_injective' s t h := by
-    cases s
-    cases t
-    congr
+  coe_injective' s t h := by cases s; cases t; congr
 
 #print TopologicalSpace.Compacts.isCompact /-
 protected theorem isCompact (s : Compacts α) : IsCompact (s : Set α) :=
@@ -212,12 +209,8 @@ protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β
     where
   toFun := Compacts.map f f.Continuous
   invFun := Compacts.map _ f.symm.Continuous
-  left_inv s := by
-    ext1
-    simp only [coe_map, ← image_comp, f.symm_comp_self, image_id]
-  right_inv s := by
-    ext1
-    simp only [coe_map, ← image_comp, f.self_comp_symm, image_id]
+  left_inv s := by ext1; simp only [coe_map, ← image_comp, f.symm_comp_self, image_id]
+  right_inv s := by ext1; simp only [coe_map, ← image_comp, f.self_comp_symm, image_id]
 #align topological_space.compacts.equiv TopologicalSpace.Compacts.equiv
 -/
 
@@ -306,10 +299,7 @@ namespace NonemptyCompacts
 instance : SetLike (NonemptyCompacts α) α
     where
   coe s := s.carrier
-  coe_injective' s t h := by
-    obtain ⟨⟨_, _⟩, _⟩ := s
-    obtain ⟨⟨_, _⟩, _⟩ := t
-    congr
+  coe_injective' s t h := by obtain ⟨⟨_, _⟩, _⟩ := s; obtain ⟨⟨_, _⟩, _⟩ := t; congr
 
 #print TopologicalSpace.NonemptyCompacts.isCompact /-
 protected theorem isCompact (s : NonemptyCompacts α) : IsCompact (s : Set α) :=
@@ -442,10 +432,7 @@ namespace PositiveCompacts
 instance : SetLike (PositiveCompacts α) α
     where
   coe s := s.carrier
-  coe_injective' s t h := by
-    obtain ⟨⟨_, _⟩, _⟩ := s
-    obtain ⟨⟨_, _⟩, _⟩ := t
-    congr
+  coe_injective' s t h := by obtain ⟨⟨_, _⟩, _⟩ := s; obtain ⟨⟨_, _⟩, _⟩ := t; congr
 
 #print TopologicalSpace.PositiveCompacts.isCompact /-
 protected theorem isCompact (s : PositiveCompacts α) : IsCompact (s : Set α) :=
@@ -631,10 +618,7 @@ namespace CompactOpens
 instance : SetLike (CompactOpens α) α
     where
   coe s := s.carrier
-  coe_injective' s t h := by
-    obtain ⟨⟨_, _⟩, _⟩ := s
-    obtain ⟨⟨_, _⟩, _⟩ := t
-    congr
+  coe_injective' s t h := by obtain ⟨⟨_, _⟩, _⟩ := s; obtain ⟨⟨_, _⟩, _⟩ := t; congr
 
 #print TopologicalSpace.CompactOpens.isCompact /-
 protected theorem isCompact (s : CompactOpens α) : IsCompact (s : Set α) :=
Diff
@@ -187,11 +187,19 @@ theorem coe_map {f : α → β} (hf : Continuous f) (s : Compacts α) : (s.map f
   rfl
 #align topological_space.compacts.coe_map TopologicalSpace.Compacts.coe_map
 
+#print TopologicalSpace.Compacts.map_id /-
 @[simp]
 theorem map_id (K : Compacts α) : K.map id continuous_id = K :=
   Compacts.ext <| Set.image_id _
 #align topological_space.compacts.map_id TopologicalSpace.Compacts.map_id
+-/
 
+/- warning: topological_space.compacts.map_comp -> TopologicalSpace.Compacts.map_comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u2, u3} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u2} α β _inst_1 _inst_2 g) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u3} (TopologicalSpace.Compacts.{u3} γ _inst_3) (TopologicalSpace.Compacts.map.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) K) (TopologicalSpace.Compacts.map.{u2, u3} β γ _inst_2 _inst_3 f hf (TopologicalSpace.Compacts.map.{u1, u2} α β _inst_1 _inst_2 g hg K))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u3, u2} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u3} α β _inst_1 _inst_2 g) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (TopologicalSpace.Compacts.{u2} γ _inst_3) (TopologicalSpace.Compacts.map.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) K) (TopologicalSpace.Compacts.map.{u3, u2} β γ _inst_2 _inst_3 f hf (TopologicalSpace.Compacts.map.{u1, u3} α β _inst_1 _inst_2 g hg K))
+Case conversion may be inaccurate. Consider using '#align topological_space.compacts.map_comp TopologicalSpace.Compacts.map_compₓ'. -/
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (K : Compacts α) :
     K.map (f ∘ g) (hf.comp hg) = (K.map g hg).map f hf :=
   Compacts.ext <| Set.image_comp _ _ _
@@ -213,22 +221,42 @@ protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β
 #align topological_space.compacts.equiv TopologicalSpace.Compacts.equiv
 -/
 
+#print TopologicalSpace.Compacts.equiv_refl /-
 @[simp]
 theorem equiv_refl : Compacts.equiv (Homeomorph.refl α) = Equiv.refl _ :=
   Equiv.ext map_id
 #align topological_space.compacts.equiv_refl TopologicalSpace.Compacts.equiv_refl
+-/
 
+/- warning: topological_space.compacts.equiv_trans -> TopologicalSpace.Compacts.equiv_trans is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2) (g : Homeomorph.{u2, u3} β γ _inst_2 _inst_3), Eq.{max 1 (max (succ u1) (succ u3)) (succ u3) (succ u1)} (Equiv.{succ u1, succ u3} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u3} γ _inst_3)) (TopologicalSpace.Compacts.equiv.{u1, u3} α γ _inst_1 _inst_3 (Homeomorph.trans.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g)) (Equiv.trans.{succ u1, succ u2, succ u3} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.{u3} γ _inst_3) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f) (TopologicalSpace.Compacts.equiv.{u2, u3} β γ _inst_2 _inst_3 g))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : TopologicalSpace.{u3} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : Homeomorph.{u3, u2} α β _inst_1 _inst_2) (g : Homeomorph.{u2, u1} β γ _inst_2 _inst_3), Eq.{max (succ u3) (succ u1)} (Equiv.{succ u3, succ u1} (TopologicalSpace.Compacts.{u3} α _inst_1) (TopologicalSpace.Compacts.{u1} γ _inst_3)) (TopologicalSpace.Compacts.equiv.{u3, u1} α γ _inst_1 _inst_3 (Homeomorph.trans.{u3, u2, u1} α β γ _inst_1 _inst_2 _inst_3 f g)) (Equiv.trans.{succ u3, succ u2, succ u1} (TopologicalSpace.Compacts.{u3} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.{u1} γ _inst_3) (TopologicalSpace.Compacts.equiv.{u3, u2} α β _inst_1 _inst_2 f) (TopologicalSpace.Compacts.equiv.{u2, u1} β γ _inst_2 _inst_3 g))
+Case conversion may be inaccurate. Consider using '#align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_transₓ'. -/
 @[simp]
 theorem equiv_trans (f : α ≃ₜ β) (g : β ≃ₜ γ) :
     Compacts.equiv (f.trans g) = (Compacts.equiv f).trans (Compacts.equiv g) :=
   Equiv.ext <| map_comp _ _ _ _
 #align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_trans
 
+/- warning: topological_space.compacts.equiv_symm -> TopologicalSpace.Compacts.equiv_symm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2), Eq.{max 1 (max (succ u2) (succ u1)) (succ u1) (succ u2)} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.{u1} α _inst_1)) (TopologicalSpace.Compacts.equiv.{u2, u1} β α _inst_2 _inst_1 (Homeomorph.symm.{u1, u2} α β _inst_1 _inst_2 f)) (Equiv.symm.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2), Eq.{max (succ u2) (succ u1)} (Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} β _inst_2) (TopologicalSpace.Compacts.{u2} α _inst_1)) (TopologicalSpace.Compacts.equiv.{u1, u2} β α _inst_2 _inst_1 (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (Equiv.symm.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f))
+Case conversion may be inaccurate. Consider using '#align topological_space.compacts.equiv_symm TopologicalSpace.Compacts.equiv_symmₓ'. -/
 @[simp]
 theorem equiv_symm (f : α ≃ₜ β) : Compacts.equiv f.symm = (Compacts.equiv f).symm :=
   rfl
 #align topological_space.compacts.equiv_symm TopologicalSpace.Compacts.equiv_symm
 
+/- warning: topological_space.compacts.coe_equiv_apply_eq_preimage -> TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.Compacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.Compacts.{u2} β _inst_2) β (TopologicalSpace.Compacts.setLike.{u2} β _inst_2)))) (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (fun (_x : Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) => (TopologicalSpace.Compacts.{u1} α _inst_1) -> (TopologicalSpace.Compacts.{u2} β _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u2, u1} β α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_2 _inst_1) (fun (_x : Homeomorph.{u2, u1} β α _inst_2 _inst_1) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (Homeomorph.symm.{u1, u2} α β _inst_1 _inst_2 f)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) K))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) K) β (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} β _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.{u2} α _inst_1) (fun (_x : TopologicalSpace.Compacts.{u2} α _inst_1) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u1, u2} β α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_2 _inst_1))) (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (SetLike.coe.{u2, u2} (TopologicalSpace.Compacts.{u2} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u2} α _inst_1) K))
+Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_equiv_apply_eq_preimage TopologicalSpace.Compacts.coe_equiv_apply_eq_preimageₓ'. -/
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
 theorem coe_equiv_apply_eq_preimage (f : α ≃ₜ β) (K : Compacts α) :
     (Compacts.equiv f K : Set β) = f.symm ⁻¹' (K : Set α) :=
@@ -497,6 +525,7 @@ theorem coe_top [CompactSpace α] [Nonempty α] : (↑(⊤ : PositiveCompacts α
 #align topological_space.positive_compacts.coe_top TopologicalSpace.PositiveCompacts.coe_top
 -/
 
+#print TopologicalSpace.PositiveCompacts.map /-
 /-- The image of a positive compact set under a continuous open map. -/
 protected def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (K : PositiveCompacts α) :
     PositiveCompacts β :=
@@ -504,18 +533,33 @@ protected def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (K : P
     interior_nonempty' :=
       (K.interior_nonempty'.image _).mono (hf'.image_interior_subset K.toCompacts) }
 #align topological_space.positive_compacts.map TopologicalSpace.PositiveCompacts.map
+-/
 
+/- warning: topological_space.positive_compacts.coe_map -> TopologicalSpace.PositiveCompacts.coe_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] {f : α -> β} (hf : Continuous.{u1, u2} α β _inst_1 _inst_2 f) (hf' : IsOpenMap.{u1, u2} α β _inst_1 _inst_2 f) (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) (Set.{u2} β) (SetLike.Set.hasCoeT.{u2, u2} (TopologicalSpace.PositiveCompacts.{u2} β _inst_2) β (TopologicalSpace.PositiveCompacts.setLike.{u2} β _inst_2)))) (TopologicalSpace.PositiveCompacts.map.{u1, u2} α β _inst_1 _inst_2 f hf hf' s)) (Set.image.{u1, u2} α β f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) s))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} (hf : Continuous.{u2, u1} α β _inst_1 _inst_2 f) (hf' : IsOpenMap.{u2, u1} α β _inst_1 _inst_2 f) (s : TopologicalSpace.PositiveCompacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} β _inst_2) β (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} β _inst_2) (TopologicalSpace.PositiveCompacts.map.{u2, u1} α β _inst_1 _inst_2 f hf hf' s)) (Set.image.{u2, u1} α β f (SetLike.coe.{u2, u2} (TopologicalSpace.PositiveCompacts.{u2} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u2} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.coe_map TopologicalSpace.PositiveCompacts.coe_mapₓ'. -/
 @[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : PositiveCompacts α) :
     (s.map f hf hf' : Set β) = f '' s :=
   rfl
 #align topological_space.positive_compacts.coe_map TopologicalSpace.PositiveCompacts.coe_map
 
+#print TopologicalSpace.PositiveCompacts.map_id /-
 @[simp]
 theorem map_id (K : PositiveCompacts α) : K.map id continuous_id IsOpenMap.id = K :=
   PositiveCompacts.ext <| Set.image_id _
 #align topological_space.positive_compacts.map_id TopologicalSpace.PositiveCompacts.map_id
+-/
 
+/- warning: topological_space.positive_compacts.map_comp -> TopologicalSpace.PositiveCompacts.map_comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u2, u3} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u2} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u2, u3} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u2} α β _inst_1 _inst_2 g) (K : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u3} (TopologicalSpace.PositiveCompacts.{u3} γ _inst_3) (TopologicalSpace.PositiveCompacts.map.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.PositiveCompacts.map.{u2, u3} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.PositiveCompacts.map.{u1, u2} α β _inst_1 _inst_2 g hg hg' K))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u3, u2} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u3} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u3, u2} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u3} α β _inst_1 _inst_2 g) (K : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u2} (TopologicalSpace.PositiveCompacts.{u2} γ _inst_3) (TopologicalSpace.PositiveCompacts.map.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.PositiveCompacts.map.{u3, u2} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.PositiveCompacts.map.{u1, u3} α β _inst_1 _inst_2 g hg hg' K))
+Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.map_comp TopologicalSpace.PositiveCompacts.map_compₓ'. -/
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
     (hg' : IsOpenMap g) (K : PositiveCompacts α) :
     K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
@@ -756,11 +800,19 @@ theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : Com
   rfl
 #align topological_space.compact_opens.coe_map TopologicalSpace.CompactOpens.coe_map
 
+#print TopologicalSpace.CompactOpens.map_id /-
 @[simp]
 theorem map_id (K : CompactOpens α) : K.map id continuous_id IsOpenMap.id = K :=
   CompactOpens.ext <| Set.image_id _
 #align topological_space.compact_opens.map_id TopologicalSpace.CompactOpens.map_id
+-/
 
+/- warning: topological_space.compact_opens.map_comp -> TopologicalSpace.CompactOpens.map_comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u2, u3} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u2} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u2, u3} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u2} α β _inst_1 _inst_2 g) (K : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u3} (TopologicalSpace.CompactOpens.{u3} γ _inst_3) (TopologicalSpace.CompactOpens.map.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.CompactOpens.map.{u2, u3} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.CompactOpens.map.{u1, u2} α β _inst_1 _inst_2 g hg hg' K))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (f : β -> γ) (g : α -> β) (hf : Continuous.{u3, u2} β γ _inst_2 _inst_3 f) (hg : Continuous.{u1, u3} α β _inst_1 _inst_2 g) (hf' : IsOpenMap.{u3, u2} β γ _inst_2 _inst_3 f) (hg' : IsOpenMap.{u1, u3} α β _inst_1 _inst_2 g) (K : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u2} (TopologicalSpace.CompactOpens.{u2} γ _inst_3) (TopologicalSpace.CompactOpens.map.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ f g) (Continuous.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf hg) (IsOpenMap.comp.{u1, u2, u3} α β γ _inst_1 _inst_2 _inst_3 f g hf' hg') K) (TopologicalSpace.CompactOpens.map.{u3, u2} β γ _inst_2 _inst_3 f hf hf' (TopologicalSpace.CompactOpens.map.{u1, u3} α β _inst_1 _inst_2 g hg hg' K))
+Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.map_comp TopologicalSpace.CompactOpens.map_compₓ'. -/
 theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
     (hg' : IsOpenMap g) (K : CompactOpens α) :
     K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yaël Dillies
 
 ! This file was ported from Lean 3 source module topology.sets.compacts
-! leanprover-community/mathlib commit 1ead22342e1a078bd44744ace999f85756555d35
+! leanprover-community/mathlib commit 8c1b484d6a214e059531e22f1be9898ed6c1fd47
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -32,7 +32,7 @@ For a topological space `α`,
 
 open Set
 
-variable {α β : Type _} [TopologicalSpace α] [TopologicalSpace β]
+variable {α β γ : Type _} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
 
 namespace TopologicalSpace
 
@@ -131,9 +131,9 @@ theorem coe_sup (s t : Compacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
 
 /- warning: topological_space.compacts.coe_inf -> TopologicalSpace.Compacts.coe_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasInf.{u1} α _inst_1 _inst_3) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasInf.{u1} α _inst_1 _inst_4) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instInfCompacts.{u1} α _inst_1 _inst_3) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instInfCompacts.{u1} α _inst_1 _inst_4) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_inf TopologicalSpace.Compacts.coe_infₓ'. -/
 @[simp]
 theorem coe_inf [T2Space α] (s t : Compacts α) : (↑(s ⊓ t) : Set α) = s ∩ t :=
@@ -182,14 +182,24 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} (hf : Continuous.{u2, u1} α β _inst_1 _inst_2 f) (s : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} β _inst_2) β (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} β _inst_2) (TopologicalSpace.Compacts.map.{u2, u1} α β _inst_1 _inst_2 f hf s)) (Set.image.{u2, u1} α β f (SetLike.coe.{u2, u2} (TopologicalSpace.Compacts.{u2} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u2} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_map TopologicalSpace.Compacts.coe_mapₓ'. -/
-@[simp]
+@[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (s : Compacts α) : (s.map f hf : Set β) = f '' s :=
   rfl
 #align topological_space.compacts.coe_map TopologicalSpace.Compacts.coe_map
 
+@[simp]
+theorem map_id (K : Compacts α) : K.map id continuous_id = K :=
+  Compacts.ext <| Set.image_id _
+#align topological_space.compacts.map_id TopologicalSpace.Compacts.map_id
+
+theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (K : Compacts α) :
+    K.map (f ∘ g) (hf.comp hg) = (K.map g hg).map f hf :=
+  Compacts.ext <| Set.image_comp _ _ _
+#align topological_space.compacts.map_comp TopologicalSpace.Compacts.map_comp
+
 #print TopologicalSpace.Compacts.equiv /-
 /-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
-@[simp]
+@[simps]
 protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β
     where
   toFun := Compacts.map f f.Continuous
@@ -203,16 +213,27 @@ protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β
 #align topological_space.compacts.equiv TopologicalSpace.Compacts.equiv
 -/
 
-/- warning: topological_space.compacts.equiv_to_fun_val -> TopologicalSpace.Compacts.equiv_to_fun_val is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) (TopologicalSpace.Compacts.carrier.{u2} β _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (fun (_x : Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) => (TopologicalSpace.Compacts.{u1} α _inst_1) -> (TopologicalSpace.Compacts.{u2} β _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u2, u1} β α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_2 _inst_1) (fun (_x : Homeomorph.{u2, u1} β α _inst_2 _inst_1) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (Homeomorph.symm.{u1, u2} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u1} α _inst_1 K))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (TopologicalSpace.Compacts.carrier.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.{u2} α _inst_1) (fun (_x : TopologicalSpace.Compacts.{u2} α _inst_1) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u1, u2} β α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_2 _inst_1))) (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u2} α _inst_1 K))
-Case conversion may be inaccurate. Consider using '#align topological_space.compacts.equiv_to_fun_val TopologicalSpace.Compacts.equiv_to_fun_valₓ'. -/
+@[simp]
+theorem equiv_refl : Compacts.equiv (Homeomorph.refl α) = Equiv.refl _ :=
+  Equiv.ext map_id
+#align topological_space.compacts.equiv_refl TopologicalSpace.Compacts.equiv_refl
+
+@[simp]
+theorem equiv_trans (f : α ≃ₜ β) (g : β ≃ₜ γ) :
+    Compacts.equiv (f.trans g) = (Compacts.equiv f).trans (Compacts.equiv g) :=
+  Equiv.ext <| map_comp _ _ _ _
+#align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_trans
+
+@[simp]
+theorem equiv_symm (f : α ≃ₜ β) : Compacts.equiv f.symm = (Compacts.equiv f).symm :=
+  rfl
+#align topological_space.compacts.equiv_symm TopologicalSpace.Compacts.equiv_symm
+
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
-theorem equiv_to_fun_val (f : α ≃ₜ β) (K : Compacts α) : (Compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
-  congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1
-#align topological_space.compacts.equiv_to_fun_val TopologicalSpace.Compacts.equiv_to_fun_val
+theorem coe_equiv_apply_eq_preimage (f : α ≃ₜ β) (K : Compacts α) :
+    (Compacts.equiv f K : Set β) = f.symm ⁻¹' (K : Set α) :=
+  f.toEquiv.image_eq_preimage K
+#align topological_space.compacts.coe_equiv_apply_eq_preimage TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage
 
 /- warning: topological_space.compacts.prod -> TopologicalSpace.Compacts.prod is a dubious translation:
 lean 3 declaration is
@@ -476,6 +497,31 @@ theorem coe_top [CompactSpace α] [Nonempty α] : (↑(⊤ : PositiveCompacts α
 #align topological_space.positive_compacts.coe_top TopologicalSpace.PositiveCompacts.coe_top
 -/
 
+/-- The image of a positive compact set under a continuous open map. -/
+protected def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (K : PositiveCompacts α) :
+    PositiveCompacts β :=
+  { K.map f hf with
+    interior_nonempty' :=
+      (K.interior_nonempty'.image _).mono (hf'.image_interior_subset K.toCompacts) }
+#align topological_space.positive_compacts.map TopologicalSpace.PositiveCompacts.map
+
+@[simp, norm_cast]
+theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : PositiveCompacts α) :
+    (s.map f hf hf' : Set β) = f '' s :=
+  rfl
+#align topological_space.positive_compacts.coe_map TopologicalSpace.PositiveCompacts.coe_map
+
+@[simp]
+theorem map_id (K : PositiveCompacts α) : K.map id continuous_id IsOpenMap.id = K :=
+  PositiveCompacts.ext <| Set.image_id _
+#align topological_space.positive_compacts.map_id TopologicalSpace.PositiveCompacts.map_id
+
+theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
+    (hg' : IsOpenMap g) (K : PositiveCompacts α) :
+    K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
+  PositiveCompacts.ext <| Set.image_comp _ _ _
+#align topological_space.positive_compacts.map_comp TopologicalSpace.PositiveCompacts.map_comp
+
 #print exists_positiveCompacts_subset /-
 theorem exists_positiveCompacts_subset [LocallyCompactSpace α] {U : Set α} (ho : IsOpen U)
     (hn : U.Nonempty) : ∃ K : PositiveCompacts α, ↑K ⊆ U :=
@@ -642,9 +688,9 @@ theorem coe_sup (s t : CompactOpens α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
 
 /- warning: topological_space.compact_opens.coe_inf -> TopologicalSpace.CompactOpens.coe_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasInf.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_3)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasInf.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_4)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instInfCompactOpens.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_3)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instInfCompactOpens.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_4)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_inf TopologicalSpace.CompactOpens.coe_infₓ'. -/
 @[simp]
 theorem coe_inf [T2Space α] (s t : CompactOpens α) : (↑(s ⊓ t) : Set α) = s ∩ t :=
@@ -667,9 +713,9 @@ theorem coe_bot : (↑(⊥ : CompactOpens α) : Set α) = ∅ :=
 
 /- warning: topological_space.compact_opens.coe_sdiff -> TopologicalSpace.CompactOpens.coe_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (SDiff.sdiff.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasSdiff.{u1} α _inst_1 _inst_3) s t)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (SDiff.sdiff.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasSdiff.{u1} α _inst_1 _inst_4) s t)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (SDiff.sdiff.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instSDiffCompactOpens.{u1} α _inst_1 _inst_3) s t)) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (SDiff.sdiff.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instSDiffCompactOpens.{u1} α _inst_1 _inst_4) s t)) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_sdiff TopologicalSpace.CompactOpens.coe_sdiffₓ'. -/
 @[simp]
 theorem coe_sdiff [T2Space α] (s t : CompactOpens α) : (↑(s \ t) : Set α) = s \ t :=
@@ -678,9 +724,9 @@ theorem coe_sdiff [T2Space α] (s t : CompactOpens α) : (↑(s \ t) : Set α) =
 
 /- warning: topological_space.compact_opens.coe_compl -> TopologicalSpace.CompactOpens.coe_compl is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] [_inst_4 : CompactSpace.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (HasCompl.compl.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasCompl.{u1} α _inst_1 _inst_3 _inst_4) s)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] [_inst_5 : CompactSpace.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (HasCompl.compl.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasCompl.{u1} α _inst_1 _inst_4 _inst_5) s)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] [_inst_4 : CompactSpace.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (HasCompl.compl.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instHasComplCompactOpens.{u1} α _inst_1 _inst_3 _inst_4) s)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_4 : T2Space.{u1} α _inst_1] [_inst_5 : CompactSpace.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (HasCompl.compl.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instHasComplCompactOpens.{u1} α _inst_1 _inst_4 _inst_5) s)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_compl TopologicalSpace.CompactOpens.coe_complₓ'. -/
 @[simp]
 theorem coe_compl [T2Space α] [CompactSpace α] (s : CompactOpens α) : (↑(sᶜ) : Set α) = sᶜ :=
@@ -704,12 +750,23 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} (hf : Continuous.{u2, u1} α β _inst_1 _inst_2 f) (hf' : IsOpenMap.{u2, u1} α β _inst_1 _inst_2 f) (s : TopologicalSpace.CompactOpens.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} β _inst_2) β (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} β _inst_2) (TopologicalSpace.CompactOpens.map.{u2, u1} α β _inst_1 _inst_2 f hf hf' s)) (Set.image.{u2, u1} α β f (SetLike.coe.{u2, u2} (TopologicalSpace.CompactOpens.{u2} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u2} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_map TopologicalSpace.CompactOpens.coe_mapₓ'. -/
-@[simp]
+@[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
     (s.map f hf hf' : Set β) = f '' s :=
   rfl
 #align topological_space.compact_opens.coe_map TopologicalSpace.CompactOpens.coe_map
 
+@[simp]
+theorem map_id (K : CompactOpens α) : K.map id continuous_id IsOpenMap.id = K :=
+  CompactOpens.ext <| Set.image_id _
+#align topological_space.compact_opens.map_id TopologicalSpace.CompactOpens.map_id
+
+theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
+    (hg' : IsOpenMap g) (K : CompactOpens α) :
+    K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
+  CompactOpens.ext <| Set.image_comp _ _ _
+#align topological_space.compact_opens.map_comp TopologicalSpace.CompactOpens.map_comp
+
 /- warning: topological_space.compact_opens.prod -> TopologicalSpace.CompactOpens.prod is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β], (TopologicalSpace.CompactOpens.{u1} α _inst_1) -> (TopologicalSpace.CompactOpens.{u2} β _inst_2) -> (TopologicalSpace.CompactOpens.{max u1 u2} (Prod.{u1, u2} α β) (Prod.topologicalSpace.{u1, u2} α β _inst_1 _inst_2))
Diff
@@ -207,7 +207,7 @@ protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) (TopologicalSpace.Compacts.carrier.{u2} β _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (fun (_x : Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) => (TopologicalSpace.Compacts.{u1} α _inst_1) -> (TopologicalSpace.Compacts.{u2} β _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u2, u1} β α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_2 _inst_1) (fun (_x : Homeomorph.{u2, u1} β α _inst_2 _inst_1) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (Homeomorph.symm.{u1, u2} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u1} α _inst_1 K))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (TopologicalSpace.Compacts.carrier.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.{u2} α _inst_1) (fun (_x : TopologicalSpace.Compacts.{u2} α _inst_1) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u1, u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_2 _inst_1))) (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u2} α _inst_1 K))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (TopologicalSpace.Compacts.carrier.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.{u2} α _inst_1) (fun (_x : TopologicalSpace.Compacts.{u2} α _inst_1) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u1, u2} β α (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => α) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u1) (succ u2), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_2 _inst_1))) (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u2} α _inst_1 K))
 Case conversion may be inaccurate. Consider using '#align topological_space.compacts.equiv_to_fun_val TopologicalSpace.Compacts.equiv_to_fun_valₓ'. -/
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
 theorem equiv_to_fun_val (f : α ≃ₜ β) (K : Compacts α) : (Compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
Diff
@@ -207,7 +207,7 @@ protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : TopologicalSpace.{u2} β] (f : Homeomorph.{u1, u2} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u2} (Set.{u2} β) (TopologicalSpace.Compacts.carrier.{u2} β _inst_2 (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (fun (_x : Equiv.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) => (TopologicalSpace.Compacts.{u1} α _inst_1) -> (TopologicalSpace.Compacts.{u2} β _inst_2)) (Equiv.hasCoeToFun.{succ u1, succ u2} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.{u2} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u1, u2} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u2, u1} β α (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (Homeomorph.{u2, u1} β α _inst_2 _inst_1) (fun (_x : Homeomorph.{u2, u1} β α _inst_2 _inst_1) => β -> α) (Homeomorph.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (Homeomorph.symm.{u1, u2} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u1} α _inst_1 K))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (TopologicalSpace.Compacts.carrier.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.{u2} α _inst_1) (fun (_x : TopologicalSpace.Compacts.{u2} α _inst_1) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u1, u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_2 _inst_1))) (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u2} α _inst_1 K))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} α] [_inst_2 : TopologicalSpace.{u1} β] (f : Homeomorph.{u2, u1} α β _inst_1 _inst_2) (K : TopologicalSpace.Compacts.{u2} α _inst_1), Eq.{succ u1} (Set.{u1} β) (TopologicalSpace.Compacts.carrier.{u1} β _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Equiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.{u2} α _inst_1) (fun (_x : TopologicalSpace.Compacts.{u2} α _inst_1) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : TopologicalSpace.Compacts.{u2} α _inst_1) => TopologicalSpace.Compacts.{u1} β _inst_2) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u1} (TopologicalSpace.Compacts.{u2} α _inst_1) (TopologicalSpace.Compacts.{u1} β _inst_2)) (TopologicalSpace.Compacts.equiv.{u2, u1} α β _inst_1 _inst_2 f) K)) (Set.preimage.{u1, u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (Homeomorph.{u1, u2} β α _inst_2 _inst_1) β α (Homeomorph.instEquivLikeHomeomorph.{u1, u2} β α _inst_2 _inst_1))) (Homeomorph.symm.{u2, u1} α β _inst_1 _inst_2 f)) (TopologicalSpace.Compacts.carrier.{u2} α _inst_1 K))
 Case conversion may be inaccurate. Consider using '#align topological_space.compacts.equiv_to_fun_val TopologicalSpace.Compacts.equiv_to_fun_valₓ'. -/
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
 theorem equiv_to_fun_val (f : α ≃ₜ β) (K : Compacts α) : (Compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
Diff
@@ -90,10 +90,10 @@ theorem carrier_eq_coe (s : Compacts α) : s.carrier = s :=
 #align topological_space.compacts.carrier_eq_coe TopologicalSpace.Compacts.carrier_eq_coe
 -/
 
-instance : HasSup (Compacts α) :=
+instance : Sup (Compacts α) :=
   ⟨fun s t => ⟨s ∪ t, s.IsCompact.union t.IsCompact⟩⟩
 
-instance [T2Space α] : HasInf (Compacts α) :=
+instance [T2Space α] : Inf (Compacts α) :=
   ⟨fun s t => ⟨s ∩ t, s.IsCompact.inter t.IsCompact⟩⟩
 
 instance [CompactSpace α] : Top (Compacts α) :=
@@ -120,9 +120,9 @@ instance : Inhabited (Compacts α) :=
 
 /- warning: topological_space.compacts.coe_sup -> TopologicalSpace.Compacts.coe_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (HasSup.sup.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (HasSup.sup.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instHasSupCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instSupCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_sup TopologicalSpace.Compacts.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : Compacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
@@ -131,9 +131,9 @@ theorem coe_sup (s t : Compacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
 
 /- warning: topological_space.compacts.coe_inf -> TopologicalSpace.Compacts.coe_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (HasInf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasInf.{u1} α _inst_1 _inst_3) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.hasInf.{u1} α _inst_1 _inst_3) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (HasInf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instHasInfCompacts.{u1} α _inst_1 _inst_3) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.Compacts.{u1} α _inst_1) (t : TopologicalSpace.Compacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.Compacts.{u1} α _inst_1) (TopologicalSpace.Compacts.instInfCompacts.{u1} α _inst_1 _inst_3) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.Compacts.{u1} α _inst_1) α (TopologicalSpace.Compacts.instSetLikeCompacts.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.compacts.coe_inf TopologicalSpace.Compacts.coe_infₓ'. -/
 @[simp]
 theorem coe_inf [T2Space α] (s t : Compacts α) : (↑(s ⊓ t) : Set α) = s ∩ t :=
@@ -302,7 +302,7 @@ theorem carrier_eq_coe (s : NonemptyCompacts α) : s.carrier = s :=
 #align topological_space.nonempty_compacts.carrier_eq_coe TopologicalSpace.NonemptyCompacts.carrier_eq_coe
 -/
 
-instance : HasSup (NonemptyCompacts α) :=
+instance : Sup (NonemptyCompacts α) :=
   ⟨fun s t => ⟨s.toCompacts ⊔ t.toCompacts, s.Nonempty.mono <| subset_union_left _ _⟩⟩
 
 instance [CompactSpace α] [Nonempty α] : Top (NonemptyCompacts α) :=
@@ -316,9 +316,9 @@ instance [CompactSpace α] [Nonempty α] : OrderTop (NonemptyCompacts α) :=
 
 /- warning: topological_space.nonempty_compacts.coe_sup -> TopologicalSpace.NonemptyCompacts.coe_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (t : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) (HasSup.sup.{u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (TopologicalSpace.NonemptyCompacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (t : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (TopologicalSpace.NonemptyCompacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (t : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) (HasSup.sup.{u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (TopologicalSpace.NonemptyCompacts.instHasSupNonemptyCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (t : TopologicalSpace.NonemptyCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) (TopologicalSpace.NonemptyCompacts.instSupNonemptyCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.NonemptyCompacts.{u1} α _inst_1) α (TopologicalSpace.NonemptyCompacts.instSetLikeNonemptyCompacts.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.nonempty_compacts.coe_sup TopologicalSpace.NonemptyCompacts.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : NonemptyCompacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
@@ -444,7 +444,7 @@ theorem carrier_eq_coe (s : PositiveCompacts α) : s.carrier = s :=
 #align topological_space.positive_compacts.carrier_eq_coe TopologicalSpace.PositiveCompacts.carrier_eq_coe
 -/
 
-instance : HasSup (PositiveCompacts α) :=
+instance : Sup (PositiveCompacts α) :=
   ⟨fun s t =>
     ⟨s.toCompacts ⊔ t.toCompacts,
       s.interior_nonempty.mono <| interior_mono <| subset_union_left _ _⟩⟩
@@ -460,9 +460,9 @@ instance [CompactSpace α] [Nonempty α] : OrderTop (PositiveCompacts α) :=
 
 /- warning: topological_space.positive_compacts.coe_sup -> TopologicalSpace.PositiveCompacts.coe_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (t : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) (HasSup.sup.{u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (TopologicalSpace.PositiveCompacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (t : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (TopologicalSpace.PositiveCompacts.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (t : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) (HasSup.sup.{u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (TopologicalSpace.PositiveCompacts.instHasSupPositiveCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (t : TopologicalSpace.PositiveCompacts.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) (TopologicalSpace.PositiveCompacts.instSupPositiveCompacts.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.PositiveCompacts.{u1} α _inst_1) α (TopologicalSpace.PositiveCompacts.instSetLikePositiveCompacts.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.positive_compacts.coe_sup TopologicalSpace.PositiveCompacts.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : PositiveCompacts α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
@@ -588,10 +588,10 @@ theorem coe_mk (s : Compacts α) (h) : (mk s h : Set α) = s :=
 #align topological_space.compact_opens.coe_mk TopologicalSpace.CompactOpens.coe_mk
 -/
 
-instance : HasSup (CompactOpens α) :=
+instance : Sup (CompactOpens α) :=
   ⟨fun s t => ⟨s.toCompacts ⊔ t.toCompacts, s.IsOpen.union t.IsOpen⟩⟩
 
-instance [QuasiSeparatedSpace α] : HasInf (CompactOpens α) :=
+instance [QuasiSeparatedSpace α] : Inf (CompactOpens α) :=
   ⟨fun U V =>
     ⟨⟨(U : Set α) ∩ (V : Set α),
         QuasiSeparatedSpace.inter_isCompact U.1.1 V.1.1 U.2 U.1.2 V.2 V.1.2⟩,
@@ -631,9 +631,9 @@ instance [T2Space α] [CompactSpace α] : BooleanAlgebra (CompactOpens α) :=
 
 /- warning: topological_space.compact_opens.coe_sup -> TopologicalSpace.CompactOpens.coe_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (HasSup.sup.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (Sup.sup.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasSup.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (HasSup.sup.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instHasSupCompactOpens.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (Sup.sup.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instSupCompactOpens.{u1} α _inst_1) s t)) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_sup TopologicalSpace.CompactOpens.coe_supₓ'. -/
 @[simp]
 theorem coe_sup (s t : CompactOpens α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
@@ -642,9 +642,9 @@ theorem coe_sup (s t : CompactOpens α) : (↑(s ⊔ t) : Set α) = s ∪ t :=
 
 /- warning: topological_space.compact_opens.coe_inf -> TopologicalSpace.CompactOpens.coe_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (HasInf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasInf.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_3)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.hasInf.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_3)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.setLike.{u1} α _inst_1)))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (HasInf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instHasInfCompactOpens.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_3)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_3 : T2Space.{u1} α _inst_1] (s : TopologicalSpace.CompactOpens.{u1} α _inst_1) (t : TopologicalSpace.CompactOpens.{u1} α _inst_1), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) (Inf.inf.{u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) (TopologicalSpace.CompactOpens.instInfCompactOpens.{u1} α _inst_1 (T2Space.to_quasiSeparatedSpace.{u1} α _inst_1 _inst_3)) s t)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) s) (SetLike.coe.{u1, u1} (TopologicalSpace.CompactOpens.{u1} α _inst_1) α (TopologicalSpace.CompactOpens.instSetLikeCompactOpens.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align topological_space.compact_opens.coe_inf TopologicalSpace.CompactOpens.coe_infₓ'. -/
 @[simp]
 theorem coe_inf [T2Space α] (s t : CompactOpens α) : (↑(s ⊓ t) : Set α) = s ∩ t :=

Changes in mathlib4

mathlib3
mathlib4
chore: classify new lemma porting notes (#11217)

Classifies by adding issue number #10756 to porting notes claiming anything semantically equivalent to:

  • "new lemma"
  • "added lemma"
Diff
@@ -250,7 +250,7 @@ theorem carrier_eq_coe (s : NonemptyCompacts α) : s.carrier = s :=
   rfl
 #align topological_space.nonempty_compacts.carrier_eq_coe TopologicalSpace.NonemptyCompacts.carrier_eq_coe
 
-@[simp] -- Porting note: new lemma
+@[simp] -- Porting note (#10756): new lemma
 theorem coe_toCompacts (s : NonemptyCompacts α) : (s.toCompacts : Set α) = s := rfl
 
 instance : Sup (NonemptyCompacts α) :=
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -169,7 +169,7 @@ theorem equiv_refl : Compacts.equiv (Homeomorph.refl α) = Equiv.refl _ :=
 @[simp]
 theorem equiv_trans (f : α ≃ₜ β) (g : β ≃ₜ γ) :
     Compacts.equiv (f.trans g) = (Compacts.equiv f).trans (Compacts.equiv g) :=
-  -- porting note: can no longer write `map_comp _ _ _ _` and unify
+  -- Porting note: can no longer write `map_comp _ _ _ _` and unify
   Equiv.ext <| map_comp g f g.continuous f.continuous
 #align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_trans
 
@@ -245,12 +245,12 @@ theorem coe_mk (s : Compacts α) (h) : (mk s h : Set α) = s :=
   rfl
 #align topological_space.nonempty_compacts.coe_mk TopologicalSpace.NonemptyCompacts.coe_mk
 
--- porting note: `@[simp]` moved to `coe_toCompacts`
+-- Porting note: `@[simp]` moved to `coe_toCompacts`
 theorem carrier_eq_coe (s : NonemptyCompacts α) : s.carrier = s :=
   rfl
 #align topological_space.nonempty_compacts.carrier_eq_coe TopologicalSpace.NonemptyCompacts.carrier_eq_coe
 
-@[simp] -- porting note: new lemma
+@[simp] -- Porting note: new lemma
 theorem coe_toCompacts (s : NonemptyCompacts α) : (s.toCompacts : Set α) = s := rfl
 
 instance : Sup (NonemptyCompacts α) :=
@@ -353,7 +353,7 @@ theorem coe_mk (s : Compacts α) (h) : (mk s h : Set α) = s :=
   rfl
 #align topological_space.positive_compacts.coe_mk TopologicalSpace.PositiveCompacts.coe_mk
 
--- porting note: `@[simp]` moved to a new lemma
+-- Porting note: `@[simp]` moved to a new lemma
 theorem carrier_eq_coe (s : PositiveCompacts α) : s.carrier = s :=
   rfl
 #align topological_space.positive_compacts.carrier_eq_coe TopologicalSpace.PositiveCompacts.carrier_eq_coe
chore(MetricSpace/Baire): fix Encodable/Countable (#10249)
  • Assume {ι : Sort*} [Countable ι] instead of {ι : Type*} [Encodable ι].
  • Generalize 2nd Baire theorem from T₂ spaces to R₁ spaces.
  • Rename type variables.
Diff
@@ -418,6 +418,11 @@ theorem _root_.exists_positiveCompacts_subset [LocallyCompactSpace α] {U : Set
   ⟨⟨⟨K, hKc⟩, ⟨x, hxK⟩⟩, hKU⟩
 #align exists_positive_compacts_subset exists_positiveCompacts_subset
 
+theorem _root_.IsOpen.exists_positiveCompacts_closure_subset [R1Space α] [LocallyCompactSpace α]
+    {U : Set α} (ho : IsOpen U) (hn : U.Nonempty) : ∃ K : PositiveCompacts α, closure ↑K ⊆ U :=
+  let ⟨K, hKU⟩ := exists_positiveCompacts_subset ho hn
+  ⟨K, K.isCompact.closure_subset_of_isOpen ho hKU⟩
+
 instance [CompactSpace α] [Nonempty α] : Inhabited (PositiveCompacts α) :=
   ⟨⊤⟩
 
refactor(Topology/Clopen): order of open and closed (#9957)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -484,7 +484,7 @@ def toOpens (s : CompactOpens α) : Opens α := ⟨s, s.isOpen⟩
 /-- Reinterpret a compact open as a clopen. -/
 @[simps]
 def toClopens [T2Space α] (s : CompactOpens α) : Clopens α :=
-  ⟨s, s.isOpen, s.isCompact.isClosed⟩
+  ⟨s, s.isCompact.isClosed, s.isOpen⟩
 #align topological_space.compact_opens.to_clopens TopologicalSpace.CompactOpens.toClopens
 
 @[ext]
feat: define weakly locally compact spaces (#6770)
Diff
@@ -422,8 +422,10 @@ instance [CompactSpace α] [Nonempty α] : Inhabited (PositiveCompacts α) :=
   ⟨⊤⟩
 
 /-- In a nonempty locally compact space, there exists a compact set with nonempty interior. -/
-instance nonempty' [LocallyCompactSpace α] [Nonempty α] : Nonempty (PositiveCompacts α) :=
-  nonempty_of_exists <| exists_positiveCompacts_subset isOpen_univ univ_nonempty
+instance nonempty' [WeaklyLocallyCompactSpace α] [Nonempty α] : Nonempty (PositiveCompacts α) := by
+  inhabit α
+  rcases exists_compact_mem_nhds (default : α) with ⟨K, hKc, hK⟩
+  exact ⟨⟨K, hKc⟩, _, mem_interior_iff_mem_nhds.2 hK⟩
 #align topological_space.positive_compacts.nonempty' TopologicalSpace.PositiveCompacts.nonempty'
 
 /-- The product of two `TopologicalSpace.PositiveCompacts`, as a `TopologicalSpace.PositiveCompacts`
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -26,14 +26,14 @@ For a topological space `α`,
 
 open Set
 
-variable {α β γ : Type _} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
+variable {α β γ : Type*} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
 
 namespace TopologicalSpace
 
 /-! ### Compact sets -/
 
 /-- The type of compact sets of a topological space. -/
-structure Compacts (α : Type _) [TopologicalSpace α] where
+structure Compacts (α : Type*) [TopologicalSpace α] where
   carrier : Set α
   isCompact' : IsCompact carrier
 #align topological_space.compacts TopologicalSpace.Compacts
@@ -121,7 +121,7 @@ theorem coe_bot : (↑(⊥ : Compacts α) : Set α) = ∅ :=
 #align topological_space.compacts.coe_bot TopologicalSpace.Compacts.coe_bot
 
 @[simp]
-theorem coe_finset_sup {ι : Type _} {s : Finset ι} {f : ι → Compacts α} :
+theorem coe_finset_sup {ι : Type*} {s : Finset ι} {f : ι → Compacts α} :
     (↑(s.sup f) : Set α) = s.sup fun i => ↑(f i) := by
   refine Finset.cons_induction_on s rfl fun a s _ h => ?_
   simp_rw [Finset.sup_cons, coe_sup, sup_eq_union]
@@ -204,7 +204,7 @@ end Compacts
 /-! ### Nonempty compact sets -/
 
 /-- The type of nonempty compact sets of a topological space. -/
-structure NonemptyCompacts (α : Type _) [TopologicalSpace α] extends Compacts α where
+structure NonemptyCompacts (α : Type*) [TopologicalSpace α] extends Compacts α where
   nonempty' : carrier.Nonempty
 #align topological_space.nonempty_compacts TopologicalSpace.NonemptyCompacts
 
@@ -308,7 +308,7 @@ end NonemptyCompacts
 
 /-- The type of compact sets with nonempty interior of a topological space.
 See also `TopologicalSpace.Compacts` and `TopologicalSpace.NonemptyCompacts`. -/
-structure PositiveCompacts (α : Type _) [TopologicalSpace α] extends Compacts α where
+structure PositiveCompacts (α : Type*) [TopologicalSpace α] extends Compacts α where
   interior_nonempty' : (interior carrier).Nonempty
 #align topological_space.positive_compacts TopologicalSpace.PositiveCompacts
 
@@ -448,7 +448,7 @@ end PositiveCompacts
 
 /-- The type of compact open sets of a topological space. This is useful in non Hausdorff contexts,
 in particular spectral spaces. -/
-structure CompactOpens (α : Type _) [TopologicalSpace α] extends Compacts α where
+structure CompactOpens (α : Type*) [TopologicalSpace α] extends Compacts α where
   isOpen' : IsOpen carrier
 #align topological_space.compact_opens TopologicalSpace.CompactOpens
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Floris van Doorn. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yaël Dillies
-
-! This file was ported from Lean 3 source module topology.sets.compacts
-! leanprover-community/mathlib commit 8c1b484d6a214e059531e22f1be9898ed6c1fd47
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Topology.Sets.Closeds
 import Mathlib.Topology.QuasiSeparated
 
+#align_import topology.sets.compacts from "leanprover-community/mathlib"@"8c1b484d6a214e059531e22f1be9898ed6c1fd47"
+
 /-!
 # Compact sets
 
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -565,7 +565,7 @@ theorem coe_sdiff [T2Space α] (s t : CompactOpens α) : (↑(s \ t) : Set α) =
 #align topological_space.compact_opens.coe_sdiff TopologicalSpace.CompactOpens.coe_sdiff
 
 @[simp]
-theorem coe_compl [T2Space α] [CompactSpace α] (s : CompactOpens α) : (↑(sᶜ) : Set α) = ↑sᶜ :=
+theorem coe_compl [T2Space α] [CompactSpace α] (s : CompactOpens α) : (↑sᶜ : Set α) = (↑s)ᶜ :=
   rfl
 #align topological_space.compact_opens.coe_compl TopologicalSpace.CompactOpens.coe_compl
 
refactor: use the typeclass SProd to implement overloaded notation · ×ˢ · (#4200)

Currently, the following notations are changed from · ×ˢ · because Lean 4 can't deal with ambiguous notations. | Definition | Notation | | :

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -195,7 +195,8 @@ protected def prod (K : Compacts α) (L : Compacts β) : Compacts (α × β) whe
 #align topological_space.compacts.prod TopologicalSpace.Compacts.prod
 
 @[simp]
-theorem coe_prod (K : Compacts α) (L : Compacts β) : (K.prod L : Set (α × β)) = K ×ˢ L :=
+theorem coe_prod (K : Compacts α) (L : Compacts β) :
+    (K.prod L : Set (α × β)) = (K : Set α) ×ˢ (L : Set β) :=
   rfl
 #align topological_space.compacts.coe_prod TopologicalSpace.Compacts.coe_prod
 
@@ -300,7 +301,7 @@ protected def prod (K : NonemptyCompacts α) (L : NonemptyCompacts β) : Nonempt
 
 @[simp]
 theorem coe_prod (K : NonemptyCompacts α) (L : NonemptyCompacts β) :
-    (K.prod L : Set (α × β)) = K ×ˢ L :=
+    (K.prod L : Set (α × β)) = (K : Set α) ×ˢ (L : Set β) :=
   rfl
 #align topological_space.nonempty_compacts.coe_prod TopologicalSpace.NonemptyCompacts.coe_prod
 
@@ -440,7 +441,7 @@ protected def prod (K : PositiveCompacts α) (L : PositiveCompacts β) :
 
 @[simp]
 theorem coe_prod (K : PositiveCompacts α) (L : PositiveCompacts β) :
-    (K.prod L : Set (α × β)) = K ×ˢ L :=
+    (K.prod L : Set (α × β)) = (K : Set α) ×ˢ (L : Set β) :=
   rfl
 #align topological_space.positive_compacts.coe_prod TopologicalSpace.PositiveCompacts.coe_prod
 
@@ -601,7 +602,8 @@ protected def prod (K : CompactOpens α) (L : CompactOpens β) : CompactOpens (
 #align topological_space.compact_opens.prod TopologicalSpace.CompactOpens.prod
 
 @[simp]
-theorem coe_prod (K : CompactOpens α) (L : CompactOpens β) : (K.prod L : Set (α × β)) = K ×ˢ L :=
+theorem coe_prod (K : CompactOpens α) (L : CompactOpens β) :
+    (K.prod L : Set (α × β)) = (K : Set α) ×ˢ (L : Set β) :=
   rfl
 #align topological_space.compact_opens.coe_prod TopologicalSpace.CompactOpens.coe_prod
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yaël Dillies
 
 ! This file was ported from Lean 3 source module topology.sets.compacts
-! leanprover-community/mathlib commit dc6c365e751e34d100e80fe6e314c3c3e0fd2988
+! leanprover-community/mathlib commit 8c1b484d6a214e059531e22f1be9898ed6c1fd47
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -29,7 +29,7 @@ For a topological space `α`,
 
 open Set
 
-variable {α β : Type _} [TopologicalSpace α] [TopologicalSpace β]
+variable {α β γ : Type _} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
 
 namespace TopologicalSpace
 
@@ -136,13 +136,23 @@ protected def map (f : α → β) (hf : Continuous f) (K : Compacts α) : Compac
   ⟨f '' K.1, K.2.image hf⟩
 #align topological_space.compacts.map TopologicalSpace.Compacts.map
 
-@[simp]
+@[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (s : Compacts α) : (s.map f hf : Set β) = f '' s :=
   rfl
 #align topological_space.compacts.coe_map TopologicalSpace.Compacts.coe_map
 
-/-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
 @[simp]
+theorem map_id (K : Compacts α) : K.map id continuous_id = K :=
+  Compacts.ext <| Set.image_id _
+#align topological_space.compacts.map_id TopologicalSpace.Compacts.map_id
+
+theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (K : Compacts α) :
+    K.map (f ∘ g) (hf.comp hg) = (K.map g hg).map f hf :=
+  Compacts.ext <| Set.image_comp _ _ _
+#align topological_space.compacts.map_comp TopologicalSpace.Compacts.map_comp
+
+/-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
+@[simps]
 protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β where
   toFun := Compacts.map f f.continuous
   invFun := Compacts.map _ f.symm.continuous
@@ -154,10 +164,28 @@ protected def equiv (f : α ≃ₜ β) : Compacts α ≃ Compacts β where
     simp only [coe_map, ← image_comp, f.self_comp_symm, image_id]
 #align topological_space.compacts.equiv TopologicalSpace.Compacts.equiv
 
+@[simp]
+theorem equiv_refl : Compacts.equiv (Homeomorph.refl α) = Equiv.refl _ :=
+  Equiv.ext map_id
+#align topological_space.compacts.equiv_refl TopologicalSpace.Compacts.equiv_refl
+
+@[simp]
+theorem equiv_trans (f : α ≃ₜ β) (g : β ≃ₜ γ) :
+    Compacts.equiv (f.trans g) = (Compacts.equiv f).trans (Compacts.equiv g) :=
+  -- porting note: can no longer write `map_comp _ _ _ _` and unify
+  Equiv.ext <| map_comp g f g.continuous f.continuous
+#align topological_space.compacts.equiv_trans TopologicalSpace.Compacts.equiv_trans
+
+@[simp]
+theorem equiv_symm (f : α ≃ₜ β) : Compacts.equiv f.symm = (Compacts.equiv f).symm :=
+  rfl
+#align topological_space.compacts.equiv_symm TopologicalSpace.Compacts.equiv_symm
+
 /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
-theorem equiv_to_fun_val (f : α ≃ₜ β) (K : Compacts α) : (Compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
-  congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1
-#align topological_space.compacts.equiv_to_fun_val TopologicalSpace.Compacts.equiv_to_fun_val
+theorem coe_equiv_apply_eq_preimage (f : α ≃ₜ β) (K : Compacts α) :
+    (Compacts.equiv f K : Set β) = f.symm ⁻¹' (K : Set α) :=
+  f.toEquiv.image_eq_preimage K
+#align topological_space.compacts.coe_equiv_apply_eq_preimage TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage
 
 /-- The product of two `TopologicalSpace.Compacts`, as a `TopologicalSpace.Compacts` in the product
 space. -/
@@ -360,6 +388,31 @@ theorem coe_top [CompactSpace α] [Nonempty α] : (↑(⊤ : PositiveCompacts α
   rfl
 #align topological_space.positive_compacts.coe_top TopologicalSpace.PositiveCompacts.coe_top
 
+/-- The image of a positive compact set under a continuous open map. -/
+protected def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (K : PositiveCompacts α) :
+    PositiveCompacts β :=
+  { Compacts.map f hf K.toCompacts with
+    interior_nonempty' :=
+      (K.interior_nonempty'.image _).mono (hf'.image_interior_subset K.toCompacts) }
+#align topological_space.positive_compacts.map TopologicalSpace.PositiveCompacts.map
+
+@[simp, norm_cast]
+theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : PositiveCompacts α) :
+    (s.map f hf hf' : Set β) = f '' s :=
+  rfl
+#align topological_space.positive_compacts.coe_map TopologicalSpace.PositiveCompacts.coe_map
+
+@[simp]
+theorem map_id (K : PositiveCompacts α) : K.map id continuous_id IsOpenMap.id = K :=
+  PositiveCompacts.ext <| Set.image_id _
+#align topological_space.positive_compacts.map_id TopologicalSpace.PositiveCompacts.map_id
+
+theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
+    (hg' : IsOpenMap g) (K : PositiveCompacts α) :
+    K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
+  PositiveCompacts.ext <| Set.image_comp _ _ _
+#align topological_space.positive_compacts.map_comp TopologicalSpace.PositiveCompacts.map_comp
+
 theorem _root_.exists_positiveCompacts_subset [LocallyCompactSpace α] {U : Set α} (ho : IsOpen U)
     (hn : U.Nonempty) : ∃ K : PositiveCompacts α, ↑K ⊆ U :=
   let ⟨x, hx⟩ := hn
@@ -524,12 +577,23 @@ def map (f : α → β) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpen
   ⟨s.toCompacts.map f hf, hf' _ s.isOpen⟩
 #align topological_space.compact_opens.map TopologicalSpace.CompactOpens.map
 
-@[simp]
+@[simp, norm_cast]
 theorem coe_map {f : α → β} (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
     (s.map f hf hf' : Set β) = f '' s :=
   rfl
 #align topological_space.compact_opens.coe_map TopologicalSpace.CompactOpens.coe_map
 
+@[simp]
+theorem map_id (K : CompactOpens α) : K.map id continuous_id IsOpenMap.id = K :=
+  CompactOpens.ext <| Set.image_id _
+#align topological_space.compact_opens.map_id TopologicalSpace.CompactOpens.map_id
+
+theorem map_comp (f : β → γ) (g : α → β) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f)
+    (hg' : IsOpenMap g) (K : CompactOpens α) :
+    K.map (f ∘ g) (hf.comp hg) (hf'.comp hg') = (K.map g hg hg').map f hf hf' :=
+  CompactOpens.ext <| Set.image_comp _ _ _
+#align topological_space.compact_opens.map_comp TopologicalSpace.CompactOpens.map_comp
+
 /-- The product of two `TopologicalSpace.CompactOpens`, as a `TopologicalSpace.CompactOpens` in the
 product space. -/
 protected def prod (K : CompactOpens α) (L : CompactOpens β) : CompactOpens (α × β) :=
Fix: some initialize_simps_projections configurations (#2561)
  • Some of the older ones do exactly the same as the shorter new ones
  • Also update doc (some remarks are only true after #2045 is merged)
Diff
@@ -194,7 +194,7 @@ instance : SetLike (NonemptyCompacts α) α where
 /-- See Note [custom simps projection]. -/
 def Simps.coe (s : NonemptyCompacts α) : Set α := s
 
-initialize_simps_projections NonemptyCompacts (toCompacts_carrier → coe)
+initialize_simps_projections NonemptyCompacts (carrier → coe)
 
 protected theorem isCompact (s : NonemptyCompacts α) : IsCompact (s : Set α) :=
   s.isCompact'
@@ -298,7 +298,7 @@ instance : SetLike (PositiveCompacts α) α where
 /-- See Note [custom simps projection]. -/
 def Simps.coe (s : PositiveCompacts α) : Set α := s
 
-initialize_simps_projections PositiveCompacts (toCompacts_carrier → coe)
+initialize_simps_projections PositiveCompacts (carrier → coe)
 
 protected theorem isCompact (s : PositiveCompacts α) : IsCompact (s : Set α) :=
   s.isCompact'
@@ -413,7 +413,7 @@ instance : SetLike (CompactOpens α) α where
 /-- See Note [custom simps projection]. -/
 def Simps.coe (s : CompactOpens α) : Set α := s
 
-initialize_simps_projections CompactOpens (toCompacts_carrier → coe)
+initialize_simps_projections CompactOpens (carrier → coe)
 
 protected theorem isCompact (s : CompactOpens α) : IsCompact (s : Set α) :=
   s.isCompact'
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -76,10 +76,10 @@ theorem carrier_eq_coe (s : Compacts α) : s.carrier = s :=
   rfl
 #align topological_space.compacts.carrier_eq_coe TopologicalSpace.Compacts.carrier_eq_coe
 
-instance : HasSup (Compacts α) :=
+instance : Sup (Compacts α) :=
   ⟨fun s t => ⟨s ∪ t, s.isCompact.union t.isCompact⟩⟩
 
-instance [T2Space α] : HasInf (Compacts α) :=
+instance [T2Space α] : Inf (Compacts α) :=
   ⟨fun s t => ⟨s ∩ t, s.isCompact.inter t.isCompact⟩⟩
 
 instance [CompactSpace α] : Top (Compacts α) :=
@@ -227,7 +227,7 @@ theorem carrier_eq_coe (s : NonemptyCompacts α) : s.carrier = s :=
 @[simp] -- porting note: new lemma
 theorem coe_toCompacts (s : NonemptyCompacts α) : (s.toCompacts : Set α) = s := rfl
 
-instance : HasSup (NonemptyCompacts α) :=
+instance : Sup (NonemptyCompacts α) :=
   ⟨fun s t => ⟨s.toCompacts ⊔ t.toCompacts, s.nonempty.mono <| subset_union_left _ _⟩⟩
 
 instance [CompactSpace α] [Nonempty α] : Top (NonemptyCompacts α) :=
@@ -336,7 +336,7 @@ theorem carrier_eq_coe (s : PositiveCompacts α) : s.carrier = s :=
 theorem coe_toCompacts (s : PositiveCompacts α) : (s.toCompacts : Set α) = s :=
   rfl
 
-instance : HasSup (PositiveCompacts α) :=
+instance : Sup (PositiveCompacts α) :=
   ⟨fun s t =>
     ⟨s.toCompacts ⊔ t.toCompacts,
       s.interior_nonempty.mono <| interior_mono <| subset_union_left _ _⟩⟩
@@ -444,10 +444,10 @@ theorem coe_mk (s : Compacts α) (h) : (mk s h : Set α) = s :=
   rfl
 #align topological_space.compact_opens.coe_mk TopologicalSpace.CompactOpens.coe_mk
 
-instance : HasSup (CompactOpens α) :=
+instance : Sup (CompactOpens α) :=
   ⟨fun s t => ⟨s.toCompacts ⊔ t.toCompacts, s.isOpen.union t.isOpen⟩⟩
 
-instance [QuasiSeparatedSpace α] : HasInf (CompactOpens α) :=
+instance [QuasiSeparatedSpace α] : Inf (CompactOpens α) :=
   ⟨fun U V =>
     ⟨⟨(U : Set α) ∩ (V : Set α),
         QuasiSeparatedSpace.inter_isCompact U.1.1 V.1.1 U.2 U.1.2 V.2 V.1.2⟩,
feat: port Topology.Sets.Compacts (#2265)

Dependencies 8 + 324

325 files ported (97.6%)
140615 lines ported (96.6%)
Show graph

The unported dependencies are