Documentation

Mathlib.Topology.Sets.Compacts

Compact sets #

We define a few types of compact sets in a topological space.

Main Definitions #

For a topological space α,

Compact sets #

structure TopologicalSpace.Compacts (α : Type u_4) [TopologicalSpace α] :
Type u_4

The type of compact sets of a topological space.

  • carrier : Set α

    the carrier set, i.e. the points in this set

  • isCompact' : IsCompact self.carrier
Instances For

    See Note [custom simps projection].

    Equations
    Instances For
      theorem TopologicalSpace.Compacts.ext {α : Type u_1} [TopologicalSpace α] {s t : Compacts α} (h : s = t) :
      s = t
      @[simp]
      theorem TopologicalSpace.Compacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Set α) (h : IsCompact s) :
      { carrier := s, isCompact' := h } = s
      @[simp]
      theorem TopologicalSpace.Compacts.carrier_eq_coe {α : Type u_1} [TopologicalSpace α] (s : Compacts α) :
      s.carrier = s
      Equations
      Equations
      Equations

      The type of compact sets is inhabited, with default element the empty set.

      Equations
      @[simp]
      theorem TopologicalSpace.Compacts.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : Compacts α) :
      (s t) = s t
      @[simp]
      theorem TopologicalSpace.Compacts.coe_inf {α : Type u_1} [TopologicalSpace α] [T2Space α] (s t : Compacts α) :
      (s t) = s t
      @[simp]
      theorem TopologicalSpace.Compacts.coe_finset_sup {α : Type u_1} [TopologicalSpace α] {ι : Type u_4} {s : Finset ι} {f : ιCompacts α} :
      (s.sup f) = s.sup fun (i : ι) => (f i)
      def TopologicalSpace.Compacts.map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (K : Compacts α) :

      The image of a compact set under a continuous function.

      Equations
      Instances For
        @[simp]
        theorem TopologicalSpace.Compacts.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (s : Compacts α) :
        (Compacts.map f hf s) = f '' s
        @[simp]
        theorem TopologicalSpace.Compacts.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (K : Compacts α) :
        Compacts.map (f g) K = Compacts.map f hf (Compacts.map g hg K)

        A homeomorphism induces an equivalence on compact sets, by taking the image.

        Equations
        Instances For
          @[simp]
          theorem TopologicalSpace.Compacts.equiv_symm_apply {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) (K : Compacts β) :
          (Compacts.equiv f).symm K = Compacts.map f.symm K
          @[simp]
          theorem TopologicalSpace.Compacts.equiv_apply {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) (K : Compacts α) :
          (Compacts.equiv f) K = Compacts.map f K
          @[simp]
          theorem TopologicalSpace.Compacts.equiv_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : α ≃ₜ β) (g : β ≃ₜ γ) :
          Compacts.equiv (f.trans g) = (Compacts.equiv f).trans (Compacts.equiv g)
          @[simp]
          theorem TopologicalSpace.Compacts.equiv_symm {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) :
          theorem TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) (K : Compacts α) :
          ((Compacts.equiv f) K) = f.symm ⁻¹' K

          The image of a compact set under a homeomorphism can also be expressed as a preimage.

          def TopologicalSpace.Compacts.prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : Compacts α) (L : Compacts β) :
          Compacts (α × β)

          The product of two TopologicalSpace.Compacts, as a TopologicalSpace.Compacts in the product space.

          Equations
          • K.prod L = { carrier := K ×ˢ L, isCompact' := }
          Instances For
            @[simp]
            theorem TopologicalSpace.Compacts.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : Compacts α) (L : Compacts β) :
            (K.prod L) = K ×ˢ L

            Nonempty compact sets #

            The type of nonempty compact sets of a topological space.

            Instances For

              See Note [custom simps projection].

              Equations
              Instances For

                Reinterpret a nonempty compact as a closed set.

                Equations
                • s.toCloseds = { carrier := s, closed' := }
                Instances For
                  theorem TopologicalSpace.NonemptyCompacts.ext {α : Type u_1} [TopologicalSpace α] {s t : NonemptyCompacts α} (h : s = t) :
                  s = t
                  @[simp]
                  theorem TopologicalSpace.NonemptyCompacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Compacts α) (h : s.carrier.Nonempty) :
                  { toCompacts := s, nonempty' := h } = s
                  @[simp]
                  theorem TopologicalSpace.NonemptyCompacts.coe_toCompacts {α : Type u_1} [TopologicalSpace α] (s : NonemptyCompacts α) :
                  s.toCompacts = s
                  Equations
                  @[simp]
                  theorem TopologicalSpace.NonemptyCompacts.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : NonemptyCompacts α) :
                  (s t) = s t

                  In an inhabited space, the type of nonempty compact subsets is also inhabited, with default element the singleton set containing the default element.

                  Equations

                  The product of two TopologicalSpace.NonemptyCompacts, as a TopologicalSpace.NonemptyCompacts in the product space.

                  Equations
                  • K.prod L = { toCompacts := K.prod L.toCompacts, nonempty' := }
                  Instances For
                    @[simp]
                    theorem TopologicalSpace.NonemptyCompacts.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : NonemptyCompacts α) (L : NonemptyCompacts β) :
                    (K.prod L) = K ×ˢ L

                    Positive compact sets #

                    The type of compact sets with nonempty interior of a topological space. See also TopologicalSpace.Compacts and TopologicalSpace.NonemptyCompacts.

                    Instances For

                      See Note [custom simps projection].

                      Equations
                      Instances For

                        Reinterpret a positive compact as a nonempty compact.

                        Equations
                        • s.toNonemptyCompacts = { toCompacts := s.toCompacts, nonempty' := }
                        Instances For
                          theorem TopologicalSpace.PositiveCompacts.ext {α : Type u_1} [TopologicalSpace α] {s t : PositiveCompacts α} (h : s = t) :
                          s = t
                          @[simp]
                          theorem TopologicalSpace.PositiveCompacts.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Compacts α) (h : (interior s.carrier).Nonempty) :
                          { toCompacts := s, interior_nonempty' := h } = s
                          @[simp]
                          theorem TopologicalSpace.PositiveCompacts.coe_toCompacts {α : Type u_1} [TopologicalSpace α] (s : PositiveCompacts α) :
                          s.toCompacts = s
                          Equations
                          @[simp]
                          theorem TopologicalSpace.PositiveCompacts.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : PositiveCompacts α) :
                          (s t) = s t
                          def TopologicalSpace.PositiveCompacts.map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (K : PositiveCompacts α) :

                          The image of a positive compact set under a continuous open map.

                          Equations
                          Instances For
                            @[simp]
                            theorem TopologicalSpace.PositiveCompacts.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (hf' : IsOpenMap f) (s : PositiveCompacts α) :
                            (PositiveCompacts.map f hf hf' s) = f '' s
                            theorem TopologicalSpace.PositiveCompacts.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f) (hg' : IsOpenMap g) (K : PositiveCompacts α) :
                            theorem exists_positiveCompacts_subset {α : Type u_1} [TopologicalSpace α] [LocallyCompactSpace α] {U : Set α} (ho : IsOpen U) (hn : U.Nonempty) :
                            theorem IsOpen.exists_positiveCompacts_closure_subset {α : Type u_1} [TopologicalSpace α] [R1Space α] [LocallyCompactSpace α] {U : Set α} (ho : IsOpen U) (hn : U.Nonempty) :

                            In a nonempty locally compact space, there exists a compact set with nonempty interior.

                            The product of two TopologicalSpace.PositiveCompacts, as a TopologicalSpace.PositiveCompacts in the product space.

                            Equations
                            • K.prod L = { toCompacts := K.prod L.toCompacts, interior_nonempty' := }
                            Instances For
                              @[simp]
                              theorem TopologicalSpace.PositiveCompacts.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : PositiveCompacts α) (L : PositiveCompacts β) :
                              (K.prod L) = K ×ˢ L

                              Compact open sets #

                              The type of compact open sets of a topological space. This is useful in non Hausdorff contexts, in particular spectral spaces.

                              Instances For
                                Equations

                                See Note [custom simps projection].

                                Equations
                                Instances For

                                  Reinterpret a compact open as an open.

                                  Equations
                                  • s.toOpens = { carrier := s, is_open' := }
                                  Instances For
                                    @[simp]
                                    theorem TopologicalSpace.CompactOpens.coe_toOpens {α : Type u_1} [TopologicalSpace α] (s : CompactOpens α) :
                                    s.toOpens = s

                                    Reinterpret a compact open as a clopen.

                                    Equations
                                    • s.toClopens = { carrier := s, isClopen' := }
                                    Instances For
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_toClopens {α : Type u_1} [TopologicalSpace α] [T2Space α] (s : CompactOpens α) :
                                      s.toClopens = s
                                      theorem TopologicalSpace.CompactOpens.ext {α : Type u_1} [TopologicalSpace α] {s t : CompactOpens α} (h : s = t) :
                                      s = t
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_mk {α : Type u_1} [TopologicalSpace α] (s : Compacts α) (h : IsOpen s.carrier) :
                                      { toCompacts := s, isOpen' := h } = s
                                      Equations
                                      Equations
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_sup {α : Type u_1} [TopologicalSpace α] (s t : CompactOpens α) :
                                      (s t) = s t
                                      Equations
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_inf {α : Type u_1} [TopologicalSpace α] [QuasiSeparatedSpace α] (s t : CompactOpens α) :
                                      (s t) = s t
                                      Equations
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_sdiff {α : Type u_1} [TopologicalSpace α] [T2Space α] (s t : CompactOpens α) :
                                      (s \ t) = s \ t
                                      Equations
                                      Equations
                                      Equations
                                      @[simp]
                                      @[simp]
                                      theorem TopologicalSpace.CompactOpens.coe_himp {α : Type u_1} [TopologicalSpace α] [CompactSpace α] [T2Space α] (s t : CompactOpens α) :
                                      (s t) = s t
                                      def TopologicalSpace.CompactOpens.map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :

                                      The image of a compact open under a continuous open map.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem TopologicalSpace.CompactOpens.map_toCompacts {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
                                        (map f hf hf' s).toCompacts = Compacts.map f hf s.toCompacts
                                        @[simp]
                                        theorem TopologicalSpace.CompactOpens.coe_map {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Continuous f) (hf' : IsOpenMap f) (s : CompactOpens α) :
                                        (map f hf hf' s) = f '' s
                                        @[simp]
                                        theorem TopologicalSpace.CompactOpens.map_id {α : Type u_1} [TopologicalSpace α] (K : CompactOpens α) :
                                        map id K = K
                                        theorem TopologicalSpace.CompactOpens.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : βγ) (g : αβ) (hf : Continuous f) (hg : Continuous g) (hf' : IsOpenMap f) (hg' : IsOpenMap g) (K : CompactOpens α) :
                                        map (f g) K = map f hf hf' (map g hg hg' K)

                                        The product of two TopologicalSpace.CompactOpens, as a TopologicalSpace.CompactOpens in the product space.

                                        Equations
                                        • K.prod L = { toCompacts := K.prod L.toCompacts, isOpen' := }
                                        Instances For
                                          @[simp]
                                          theorem TopologicalSpace.CompactOpens.coe_prod {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] (K : CompactOpens α) (L : CompactOpens β) :
                                          (K.prod L) = K ×ˢ L