Documentation

Mathlib.Order.BoundedOrder.Basic

⊤ and ⊥, bounded lattices and variants #

This file defines top and bottom elements (greatest and least elements) of a type, the bounded variants of different kinds of lattices, sets up the typeclass hierarchy between them and provides instances for Prop and fun.

Main declarations #

Top, bottom element #

class OrderTop (α : Type u) [LE α] extends Top α :

An order is an OrderTop if it has a greatest element. We state this using a data mixin, holding the value of and the greatest element constraint.

  • top : α
  • le_top (a : α) : a

    is the greatest element

Instances
    noncomputable def topOrderOrNoTopOrder (α : Type u_1) [LE α] :

    An order is (noncomputably) either an OrderTop or a NoTopOrder. Use as casesI topOrderOrNoTopOrder α.

    Equations
    Instances For
      @[simp]
      theorem le_top {α : Type u} [LE α] [OrderTop α] {a : α} :
      @[simp]
      theorem isTop_top {α : Type u} [LE α] [OrderTop α] :
      def IsTop.rec {α : Type u} [LE α] {P : (x : α) → IsTop xSort u_1} (h : [inst : OrderTop α] → P ) (x : α) (hx : IsTop x) :
      P x hx

      A top element can be replaced with .

      Prefer IsTop.eq_top if α already has a top element.

      Equations
      Instances For
        @[simp]
        theorem isMax_top {α : Type u} [Preorder α] [OrderTop α] :
        @[simp]
        theorem not_top_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} :
        theorem ne_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :
        theorem LT.lt.ne_top {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :

        Alias of ne_top_of_lt.

        theorem lt_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :
        a <
        theorem LT.lt.lt_top {α : Type u} [Preorder α] [OrderTop α] {a b : α} (h : a < b) :
        a <

        Alias of lt_top_of_lt.

        @[simp]
        theorem isMax_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        @[simp]
        theorem isTop_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem not_isMax_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem not_isTop_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem IsMax.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        IsMax aa =

        Alias of the forward direction of isMax_iff_eq_top.

        theorem IsTop.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        IsTop aa =

        Alias of the forward direction of isTop_iff_eq_top.

        @[simp]
        theorem top_le_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem top_unique {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
        a =
        theorem eq_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem eq_top_mono {α : Type u} [PartialOrder α] [OrderTop α] {a b : α} (h : a b) (h₂ : a = ) :
        b =
        theorem lt_top_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        @[simp]
        theorem not_lt_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
        theorem eq_top_or_lt_top {α : Type u} [PartialOrder α] [OrderTop α] (a : α) :
        a = a <
        theorem Ne.lt_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a ) :
        a <
        theorem Ne.lt_top' {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
        a <
        theorem ne_top_of_le_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a b : α} (hb : b ) (hab : a b) :
        theorem top_not_mem_iff {α : Type u} [PartialOrder α] [OrderTop α] {s : Set α} :
        ¬ s ∀ (x : α), x sx <
        theorem OrderTop.ext_top {α : Type u_1} {hA : PartialOrder α} (A : OrderTop α) {hB : PartialOrder α} (B : OrderTop α) (H : ∀ (x y : α), x y x y) :
        class OrderBot (α : Type u) [LE α] extends Bot α :

        An order is an OrderBot if it has a least element. We state this using a data mixin, holding the value of and the least element constraint.

        • bot : α
        • bot_le (a : α) : a

          is the least element

        Instances
          noncomputable def botOrderOrNoBotOrder (α : Type u_1) [LE α] :

          An order is (noncomputably) either an OrderBot or a NoBotOrder. Use as casesI botOrderOrNoBotOrder α.

          Equations
          Instances For
            @[simp]
            theorem bot_le {α : Type u} [LE α] [OrderBot α] {a : α} :
            @[simp]
            theorem isBot_bot {α : Type u} [LE α] [OrderBot α] :
            def IsBot.rec {α : Type u} [LE α] {P : (x : α) → IsBot xSort u_1} (h : [inst : OrderBot α] → P ) (x : α) (hx : IsBot x) :
            P x hx

            A bottom element can be replaced with .

            Prefer IsBot.eq_bot if α already has a bottom element.

            Equations
            Instances For
              instance OrderDual.instTop (α : Type u) [Bot α] :
              Equations
              instance OrderDual.instBot (α : Type u) [Top α] :
              Equations
              @[simp]
              theorem OrderDual.ofDual_bot (α : Type u) [Top α] :
              @[simp]
              theorem OrderDual.ofDual_top (α : Type u) [Bot α] :
              @[simp]
              theorem OrderDual.toDual_bot (α : Type u) [Bot α] :
              @[simp]
              theorem OrderDual.toDual_top (α : Type u) [Top α] :
              @[simp]
              theorem isMin_bot {α : Type u} [Preorder α] [OrderBot α] :
              @[simp]
              theorem not_lt_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} :
              theorem ne_bot_of_gt {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :
              theorem LT.lt.ne_bot {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :

              Alias of ne_bot_of_gt.

              theorem bot_lt_of_lt {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :
              < b
              theorem LT.lt.bot_lt {α : Type u} [Preorder α] [OrderBot α] {a b : α} (h : a < b) :
              < b

              Alias of bot_lt_of_lt.

              @[simp]
              theorem isMin_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              @[simp]
              theorem isBot_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              theorem not_isMin_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              theorem not_isBot_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              theorem IsMin.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              IsMin aa =

              Alias of the forward direction of isMin_iff_eq_bot.

              theorem IsBot.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              IsBot aa =

              Alias of the forward direction of isBot_iff_eq_bot.

              @[simp]
              theorem le_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              theorem bot_unique {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
              a =
              theorem eq_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              theorem eq_bot_mono {α : Type u} [PartialOrder α] [OrderBot α] {a b : α} (h : a b) (h₂ : b = ) :
              a =
              theorem bot_lt_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              @[simp]
              theorem not_bot_lt_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
              theorem eq_bot_or_bot_lt {α : Type u} [PartialOrder α] [OrderBot α] (a : α) :
              a = < a
              theorem eq_bot_of_minimal {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : ∀ (b : α), ¬b < a) :
              a =
              theorem Ne.bot_lt {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
              < a
              theorem Ne.bot_lt' {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a) :
              < a
              theorem ne_bot_of_le_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a b : α} (hb : b ) (hab : b a) :
              theorem bot_not_mem_iff {α : Type u} [PartialOrder α] [OrderBot α] {s : Set α} :
              ¬ s ∀ (x : α), x s < x
              theorem OrderBot.ext_bot {α : Type u_1} {hA : PartialOrder α} (A : OrderBot α) {hB : PartialOrder α} (B : OrderBot α) (H : ∀ (x y : α), x y x y) :

              Bounded order #

              class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α :

              A bounded order describes an order (≤) with a top and bottom element, denoted and respectively.

              Instances

                Function lattices #

                instance Pi.instBotForall {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Bot (α' i)] :
                Bot ((i : ι) → α' i)
                Equations
                @[simp]
                theorem Pi.bot_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Bot (α' i)] (i : ι) :
                theorem Pi.bot_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Bot (α' i)] :
                = fun (x : ι) =>
                instance Pi.instTopForall {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Top (α' i)] :
                Top ((i : ι) → α' i)
                Equations
                @[simp]
                theorem Pi.top_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Top (α' i)] (i : ι) :
                theorem Pi.top_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Top (α' i)] :
                = fun (x : ι) =>
                instance Pi.instOrderTop {ι : Type u_1} {α' : ιType u_2} [(i : ι) → LE (α' i)] [(i : ι) → OrderTop (α' i)] :
                OrderTop ((i : ι) → α' i)
                Equations
                instance Pi.instOrderBot {ι : Type u_1} {α' : ιType u_2} [(i : ι) → LE (α' i)] [(i : ι) → OrderBot (α' i)] :
                OrderBot ((i : ι) → α' i)
                Equations
                instance Pi.instBoundedOrder {ι : Type u_1} {α' : ιType u_2} [(i : ι) → LE (α' i)] [(i : ι) → BoundedOrder (α' i)] :
                BoundedOrder ((i : ι) → α' i)
                Equations
                theorem eq_bot_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] ( : = ) (x : α) :
                x =
                theorem eq_top_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] ( : = ) (x : α) :
                x =
                @[reducible, inline]
                abbrev OrderTop.lift {α : Type u} {β : Type v} [LE α] [Top α] [LE β] [OrderTop β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) :

                Pullback an OrderTop.

                Equations
                Instances For
                  @[reducible, inline]
                  abbrev OrderBot.lift {α : Type u} {β : Type v} [LE α] [Bot α] [LE β] [OrderBot β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_bot : f = ) :

                  Pullback an OrderBot.

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev BoundedOrder.lift {α : Type u} {β : Type v} [LE α] [Top α] [Bot α] [LE β] [BoundedOrder β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) (map_bot : f = ) :

                    Pullback a BoundedOrder.

                    Equations
                    Instances For

                      Subtype, order dual, product lattices #

                      @[reducible, inline]
                      abbrev Subtype.orderBot {α : Type u} {p : αProp} [LE α] [OrderBot α] (hbot : p ) :
                      OrderBot { x : α // p x }

                      A subtype remains a -order if the property holds at .

                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev Subtype.orderTop {α : Type u} {p : αProp} [LE α] [OrderTop α] (htop : p ) :
                        OrderTop { x : α // p x }

                        A subtype remains a -order if the property holds at .

                        Equations
                        Instances For
                          @[reducible, inline]
                          abbrev Subtype.boundedOrder {α : Type u} {p : αProp} [LE α] [BoundedOrder α] (hbot : p ) (htop : p ) :

                          A subtype remains a bounded order if the property holds at and .

                          Equations
                          Instances For
                            @[simp]
                            theorem Subtype.mk_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
                            , hbot =
                            @[simp]
                            theorem Subtype.mk_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
                            , htop =
                            theorem Subtype.coe_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
                            =
                            theorem Subtype.coe_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
                            =
                            @[simp]
                            theorem Subtype.coe_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : { x : α // p x }} :
                            x = x =
                            @[simp]
                            theorem Subtype.coe_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : { x : α // p x }} :
                            x = x =
                            @[simp]
                            theorem Subtype.mk_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : α} (hx : p x) :
                            x, hx = x =
                            @[simp]
                            theorem Subtype.mk_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : α} (hx : p x) :
                            x, hx = x =
                            instance Prod.instTop (α : Type u) (β : Type v) [Top α] [Top β] :
                            Top (α × β)
                            Equations
                            instance Prod.instBot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                            Bot (α × β)
                            Equations
                            @[simp]
                            theorem Prod.fst_top (α : Type u) (β : Type v) [Top α] [Top β] :
                            @[simp]
                            theorem Prod.snd_top (α : Type u) (β : Type v) [Top α] [Top β] :
                            @[simp]
                            theorem Prod.fst_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                            @[simp]
                            theorem Prod.snd_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
                            instance Prod.instOrderTop (α : Type u) (β : Type v) [LE α] [LE β] [OrderTop α] [OrderTop β] :
                            OrderTop (α × β)
                            Equations
                            instance Prod.instOrderBot (α : Type u) (β : Type v) [LE α] [LE β] [OrderBot α] [OrderBot β] :
                            OrderBot (α × β)
                            Equations
                            instance Prod.instBoundedOrder (α : Type u) (β : Type v) [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] :
                            Equations
                            instance ULift.instTop {α : Type u} [Top α] :
                            Equations
                            @[simp]
                            theorem ULift.up_top {α : Type u} [Top α] :
                            { down := } =
                            @[simp]
                            theorem ULift.down_top {α : Type u} [Top α] :
                            instance ULift.instBot {α : Type u} [Bot α] :
                            Equations
                            @[simp]
                            theorem ULift.up_bot {α : Type u} [Bot α] :
                            { down := } =
                            @[simp]
                            theorem ULift.down_bot {α : Type u} [Bot α] :
                            @[simp]
                            theorem bot_ne_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                            @[simp]
                            theorem top_ne_bot {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                            @[simp]
                            theorem bot_lt_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
                            @[simp]
                            @[simp]