topology.sheaves.presheaf_of_functionsMathlib.Topology.Sheaves.PresheafOfFunctions

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

chore(topology/sheaves): revert universe generalizations from #19153 (#19230)

This reverts commit 13361559.

These are just too difficult to forward port as is because of the max u v =?= max u ?v issue https://github.com/leanprover/lean4/issues/2297.

We have another candidate approach to this, using a new UnivLE typeclass, and I would prefer if we investigated that without the pressure of the port at the same time.

This will delay @hrmacbeth's plans to define meromorphic functions, perhaps.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -28,7 +28,7 @@ We construct some simple examples of presheaves of functions on a topological sp
   is the presheaf of rings of continuous complex-valued functions on `X`.
 -/
 
-universes v u w
+universes v u
 
 open category_theory
 open topological_space
@@ -42,7 +42,7 @@ variables (X : Top.{v})
 The presheaf of dependently typed functions on `X`, with fibres given by a type family `T`.
 There is no requirement that the functions are continuous, here.
 -/
-def presheaf_to_Types (T : X → Type w) : X.presheaf (Type (max v w)) :=
+def presheaf_to_Types (T : X → Type v) : X.presheaf (Type v) :=
 { obj := λ U, Π x : (unop U), T x,
   map := λ U V i g, λ (x : unop V), g (i.unop x),
   map_id' := λ U, by { ext g ⟨x, hx⟩, refl },
@@ -68,7 +68,7 @@ There is no requirement that the functions are continuous, here.
 -- We don't use `@[simps]` to generate the projection lemmas here,
 -- as it turns out to be useful to have `presheaf_to_Type_map`
 -- written as an equality of functions (rather than being applied to some argument).
-def presheaf_to_Type (T : Type w) : X.presheaf (Type max v w) :=
+def presheaf_to_Type (T : Type v) : X.presheaf (Type v) :=
 { obj := λ U, (unop U) → T,
   map := λ U V i g, g ∘ i.unop,
   map_id' := λ U, by { ext g ⟨x, hx⟩, refl },
@@ -86,8 +86,6 @@ rfl
 
 /-- The presheaf of continuous functions on `X` with values in fixed target topological space
 `T`. -/
--- TODO it may prove useful to generalize the universes here,
--- but the definition would need to change.
 def presheaf_to_Top (T : Top.{v}) : X.presheaf (Type v) :=
 (opens.to_Top X).op ⋙ (yoneda.obj T)
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

chore(topology/sheaves/*): universe generalizations (#19153)

Necessary but sadly insufficient for the request at https://leanprover.zulipchat.com/#narrow/stream/144837-PR-reviews/topic/.2319146.20sheaves.20on.20manifolds

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -28,7 +28,7 @@ We construct some simple examples of presheaves of functions on a topological sp
   is the presheaf of rings of continuous complex-valued functions on `X`.
 -/
 
-universes v u
+universes v u w
 
 open category_theory
 open topological_space
@@ -42,7 +42,7 @@ variables (X : Top.{v})
 The presheaf of dependently typed functions on `X`, with fibres given by a type family `T`.
 There is no requirement that the functions are continuous, here.
 -/
-def presheaf_to_Types (T : X → Type v) : X.presheaf (Type v) :=
+def presheaf_to_Types (T : X → Type w) : X.presheaf (Type (max v w)) :=
 { obj := λ U, Π x : (unop U), T x,
   map := λ U V i g, λ (x : unop V), g (i.unop x),
   map_id' := λ U, by { ext g ⟨x, hx⟩, refl },
@@ -68,7 +68,7 @@ There is no requirement that the functions are continuous, here.
 -- We don't use `@[simps]` to generate the projection lemmas here,
 -- as it turns out to be useful to have `presheaf_to_Type_map`
 -- written as an equality of functions (rather than being applied to some argument).
-def presheaf_to_Type (T : Type v) : X.presheaf (Type v) :=
+def presheaf_to_Type (T : Type w) : X.presheaf (Type max v w) :=
 { obj := λ U, (unop U) → T,
   map := λ U V i g, g ∘ i.unop,
   map_id' := λ U, by { ext g ⟨x, hx⟩, refl },
@@ -86,6 +86,8 @@ rfl
 
 /-- The presheaf of continuous functions on `X` with values in fixed target topological space
 `T`. -/
+-- TODO it may prove useful to generalize the universes here,
+-- but the definition would need to change.
 def presheaf_to_Top (T : Top.{v}) : X.presheaf (Type v) :=
 (opens.to_Top X).op ⋙ (yoneda.obj T)
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -5,7 +5,7 @@ Authors: Scott Morrison
 -/
 import CategoryTheory.Yoneda
 import Topology.Sheaves.Presheaf
-import Topology.Category.TopCommRing
+import Topology.Category.TopCommRingCat
 import Topology.ContinuousFunction.Algebra
 
 #align_import topology.sheaves.presheaf_of_functions from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8"
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2019 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 -/
-import Mathbin.CategoryTheory.Yoneda
-import Mathbin.Topology.Sheaves.Presheaf
-import Mathbin.Topology.Category.TopCommRing
-import Mathbin.Topology.ContinuousFunction.Algebra
+import CategoryTheory.Yoneda
+import Topology.Sheaves.Presheaf
+import Topology.Category.TopCommRing
+import Topology.ContinuousFunction.Algebra
 
 #align_import topology.sheaves.presheaf_of_functions from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8"
 
Diff
@@ -157,7 +157,7 @@ def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
   map_one' := by ext <;> exact φ.1.map_one
   map_zero' := by ext <;> exact φ.1.map_zero
   map_add' := by intros <;> ext <;> apply φ.1.map_add
-  map_mul' := by intros <;> ext <;> apply φ.1.map_mul
+  map_mul' := by intros <;> ext <;> apply φ.1.map_hMul
 #align Top.continuous_functions.map TopCat.continuousFunctions.map
 -/
 
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2019 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
-
-! This file was ported from Lean 3 source module topology.sheaves.presheaf_of_functions
-! leanprover-community/mathlib commit 5dc6092d09e5e489106865241986f7f2ad28d4c8
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.CategoryTheory.Yoneda
 import Mathbin.Topology.Sheaves.Presheaf
 import Mathbin.Topology.Category.TopCommRing
 import Mathbin.Topology.ContinuousFunction.Algebra
 
+#align_import topology.sheaves.presheaf_of_functions from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8"
+
 /-!
 # Presheaves of functions
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 
 ! This file was ported from Lean 3 source module topology.sheaves.presheaf_of_functions
-! leanprover-community/mathlib commit 13361559d66b84f80b6d5a1c4a26aa5054766725
+! leanprover-community/mathlib commit 5dc6092d09e5e489106865241986f7f2ad28d4c8
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -34,7 +34,7 @@ We construct some simple examples of presheaves of functions on a topological sp
 -/
 
 
-universe v u w
+universe v u
 
 open CategoryTheory
 
@@ -50,7 +50,7 @@ variable (X : TopCat.{v})
 /-- The presheaf of dependently typed functions on `X`, with fibres given by a type family `T`.
 There is no requirement that the functions are continuous, here.
 -/
-def presheafToTypes (T : X → Type w) : X.Presheaf (Type max v w)
+def presheafToTypes (T : X → Type v) : X.Presheaf (Type v)
     where
   obj U := ∀ x : unop U, T x
   map U V i g := fun x : unop V => g (i.unop x)
@@ -85,7 +85,7 @@ theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U 
 /-- The presheaf of functions on `X` with values in a type `T`.
 There is no requirement that the functions are continuous, here.
 -/
-def presheafToType (T : Type w) : X.Presheaf (Type max v w)
+def presheafToType (T : Type v) : X.Presheaf (Type v)
     where
   obj U := unop U → T
   map U V i g := g ∘ i.unop
@@ -111,8 +111,6 @@ theorem presheafToType_map {T : Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f
 -/
 
 #print TopCat.presheafToTop /-
--- TODO it may prove useful to generalize the universes here,
--- but the definition would need to change.
 /-- The presheaf of continuous functions on `X` with values in fixed target topological space
 `T`. -/
 def presheafToTop (T : TopCat.{v}) : X.Presheaf (Type v) :=
Diff
@@ -54,7 +54,7 @@ def presheafToTypes (T : X → Type w) : X.Presheaf (Type max v w)
     where
   obj U := ∀ x : unop U, T x
   map U V i g := fun x : unop V => g (i.unop x)
-  map_id' U := by ext (g⟨x, hx⟩); rfl
+  map_id' U := by ext g ⟨x, hx⟩; rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Types TopCat.presheafToTypes
 -/
@@ -89,7 +89,7 @@ def presheafToType (T : Type w) : X.Presheaf (Type max v w)
     where
   obj U := unop U → T
   map U V i g := g ∘ i.unop
-  map_id' U := by ext (g⟨x, hx⟩); rfl
+  map_id' U := by ext g ⟨x, hx⟩; rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Type TopCat.presheafToType
 -/
Diff
@@ -46,6 +46,7 @@ namespace TopCat
 
 variable (X : TopCat.{v})
 
+#print TopCat.presheafToTypes /-
 /-- The presheaf of dependently typed functions on `X`, with fibres given by a type family `T`.
 There is no requirement that the functions are continuous, here.
 -/
@@ -56,19 +57,25 @@ def presheafToTypes (T : X → Type w) : X.Presheaf (Type max v w)
   map_id' U := by ext (g⟨x, hx⟩); rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Types TopCat.presheafToTypes
+-/
 
+#print TopCat.presheafToTypes_obj /-
 @[simp]
 theorem presheafToTypes_obj {T : X → Type v} {U : (Opens X)ᵒᵖ} :
     (presheafToTypes X T).obj U = ∀ x : unop U, T x :=
   rfl
 #align Top.presheaf_to_Types_obj TopCat.presheafToTypes_obj
+-/
 
+#print TopCat.presheafToTypes_map /-
 @[simp]
 theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
     (presheafToTypes X T).map i f = fun x => f (i.unop x) :=
   rfl
 #align Top.presheaf_to_Types_map TopCat.presheafToTypes_map
+-/
 
+#print TopCat.presheafToType /-
 -- We don't just define this in terms of `presheaf_to_Types`,
 -- as it's helpful later to see (at a syntactic level) that `(presheaf_to_Type X T).obj U`
 -- is a non-dependent function.
@@ -85,18 +92,23 @@ def presheafToType (T : Type w) : X.Presheaf (Type max v w)
   map_id' U := by ext (g⟨x, hx⟩); rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Type TopCat.presheafToType
+-/
 
+#print TopCat.presheafToType_obj /-
 @[simp]
 theorem presheafToType_obj {T : Type v} {U : (Opens X)ᵒᵖ} :
     (presheafToType X T).obj U = (unop U → T) :=
   rfl
 #align Top.presheaf_to_Type_obj TopCat.presheafToType_obj
+-/
 
+#print TopCat.presheafToType_map /-
 @[simp]
 theorem presheafToType_map {T : Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
     (presheafToType X T).map i f = f ∘ i.unop :=
   rfl
 #align Top.presheaf_to_Type_map TopCat.presheafToType_map
+-/
 
 #print TopCat.presheafToTop /-
 -- TODO it may prove useful to generalize the universes here,
@@ -108,11 +120,13 @@ def presheafToTop (T : TopCat.{v}) : X.Presheaf (Type v) :=
 #align Top.presheaf_to_Top TopCat.presheafToTop
 -/
 
+#print TopCat.presheafToTop_obj /-
 @[simp]
 theorem presheafToTop_obj (T : TopCat.{v}) (U : (Opens X)ᵒᵖ) :
     (presheafToTop X T).obj U = ((Opens.toTopCat X).obj (unop U) ⟶ T) :=
   rfl
 #align Top.presheaf_to_Top_obj TopCat.presheafToTop_obj
+-/
 
 #print TopCat.continuousFunctions /-
 -- TODO upgrade the result to TopCommRing?
@@ -138,6 +152,7 @@ def pullback {X Y : TopCatᵒᵖ} (f : X ⟶ Y) (R : TopCommRingCat) :
 #align Top.continuous_functions.pullback TopCat.continuousFunctions.pullback
 -/
 
+#print TopCat.continuousFunctions.map /-
 /-- A homomorphism of topological rings can be postcomposed with functions from a source space `X`;
 this is a ring homomorphism (with respect to the pointwise ring operations on functions). -/
 def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
@@ -149,9 +164,11 @@ def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
   map_add' := by intros <;> ext <;> apply φ.1.map_add
   map_mul' := by intros <;> ext <;> apply φ.1.map_mul
 #align Top.continuous_functions.map TopCat.continuousFunctions.map
+-/
 
 end ContinuousFunctions
 
+#print TopCat.commRingYoneda /-
 /-- An upgraded version of the Yoneda embedding, observing that the continuous maps
 from `X : Top` to `R : TopCommRing` form a commutative ring, functorial in both `X` and `R`. -/
 def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
@@ -167,6 +184,7 @@ def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
   map_id' X := by ext; rfl
   map_comp' X Y Z f g := rfl
 #align Top.CommRing_yoneda TopCat.commRingYoneda
+-/
 
 #print TopCat.presheafToTopCommRing /-
 /-- The presheaf (of commutative rings), consisting of functions on an open set `U ⊆ X` with
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 
 ! This file was ported from Lean 3 source module topology.sheaves.presheaf_of_functions
-! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
+! leanprover-community/mathlib commit 13361559d66b84f80b6d5a1c4a26aa5054766725
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -34,7 +34,7 @@ We construct some simple examples of presheaves of functions on a topological sp
 -/
 
 
-universe v u
+universe v u w
 
 open CategoryTheory
 
@@ -46,18 +46,16 @@ namespace TopCat
 
 variable (X : TopCat.{v})
 
-#print TopCat.presheafToTypes /-
 /-- The presheaf of dependently typed functions on `X`, with fibres given by a type family `T`.
 There is no requirement that the functions are continuous, here.
 -/
-def presheafToTypes (T : X → Type v) : X.Presheaf (Type v)
+def presheafToTypes (T : X → Type w) : X.Presheaf (Type max v w)
     where
   obj U := ∀ x : unop U, T x
   map U V i g := fun x : unop V => g (i.unop x)
   map_id' U := by ext (g⟨x, hx⟩); rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Types TopCat.presheafToTypes
--/
 
 @[simp]
 theorem presheafToTypes_obj {T : X → Type v} {U : (Opens X)ᵒᵖ} :
@@ -71,7 +69,6 @@ theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U 
   rfl
 #align Top.presheaf_to_Types_map TopCat.presheafToTypes_map
 
-#print TopCat.presheafToType /-
 -- We don't just define this in terms of `presheaf_to_Types`,
 -- as it's helpful later to see (at a syntactic level) that `(presheaf_to_Type X T).obj U`
 -- is a non-dependent function.
@@ -81,14 +78,13 @@ theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U 
 /-- The presheaf of functions on `X` with values in a type `T`.
 There is no requirement that the functions are continuous, here.
 -/
-def presheafToType (T : Type v) : X.Presheaf (Type v)
+def presheafToType (T : Type w) : X.Presheaf (Type max v w)
     where
   obj U := unop U → T
   map U V i g := g ∘ i.unop
   map_id' U := by ext (g⟨x, hx⟩); rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Type TopCat.presheafToType
--/
 
 @[simp]
 theorem presheafToType_obj {T : Type v} {U : (Opens X)ᵒᵖ} :
@@ -103,6 +99,8 @@ theorem presheafToType_map {T : Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f
 #align Top.presheaf_to_Type_map TopCat.presheafToType_map
 
 #print TopCat.presheafToTop /-
+-- TODO it may prove useful to generalize the universes here,
+-- but the definition would need to change.
 /-- The presheaf of continuous functions on `X` with values in fixed target topological space
 `T`. -/
 def presheafToTop (T : TopCat.{v}) : X.Presheaf (Type v) :=
Diff
@@ -59,18 +59,12 @@ def presheafToTypes (T : X → Type v) : X.Presheaf (Type v)
 #align Top.presheaf_to_Types TopCat.presheafToTypes
 -/
 
-/- warning: Top.presheaf_to_Types_obj -> TopCat.presheafToTypes_obj is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Types_obj TopCat.presheafToTypes_objₓ'. -/
 @[simp]
 theorem presheafToTypes_obj {T : X → Type v} {U : (Opens X)ᵒᵖ} :
     (presheafToTypes X T).obj U = ∀ x : unop U, T x :=
   rfl
 #align Top.presheaf_to_Types_obj TopCat.presheafToTypes_obj
 
-/- warning: Top.presheaf_to_Types_map -> TopCat.presheafToTypes_map is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Types_map TopCat.presheafToTypes_mapₓ'. -/
 @[simp]
 theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
     (presheafToTypes X T).map i f = fun x => f (i.unop x) :=
@@ -96,21 +90,12 @@ def presheafToType (T : Type v) : X.Presheaf (Type v)
 #align Top.presheaf_to_Type TopCat.presheafToType
 -/
 
-/- warning: Top.presheaf_to_Type_obj -> TopCat.presheafToType_obj is a dubious translation:
-lean 3 declaration is
-  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) U) ((coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) -> T)
-but is expected to have type
-  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) U) ((Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))) -> T)
-Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Type_obj TopCat.presheafToType_objₓ'. -/
 @[simp]
 theorem presheafToType_obj {T : Type v} {U : (Opens X)ᵒᵖ} :
     (presheafToType X T).obj U = (unop U → T) :=
   rfl
 #align Top.presheaf_to_Type_obj TopCat.presheafToType_obj
 
-/- warning: Top.presheaf_to_Type_map -> TopCat.presheafToType_map is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Type_map TopCat.presheafToType_mapₓ'. -/
 @[simp]
 theorem presheafToType_map {T : Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
     (presheafToType X T).map i f = f ∘ i.unop :=
@@ -125,12 +110,6 @@ def presheafToTop (T : TopCat.{v}) : X.Presheaf (Type v) :=
 #align Top.presheaf_to_Top TopCat.presheafToTop
 -/
 
-/- warning: Top.presheaf_to_Top_obj -> TopCat.presheafToTop_obj is a dubious translation:
-lean 3 declaration is
-  forall (X : TopCat.{u1}) (T : TopCat.{u1}) (U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))), Eq.{succ (succ u1)} Type.{u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTop.{u1} X T) U) (Quiver.Hom.{succ u1, succ u1} TopCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCat.{u1} TopCat.largeCategory.{u1})) (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) TopCat.{u1} TopCat.largeCategory.{u1} (TopologicalSpace.Opens.toTopCat.{u1} X) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) T)
-but is expected to have type
-  forall (X : TopCat.{u1}) (T : TopCat.{u1}) (U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))), Eq.{succ (succ u1)} Type.{u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTop.{u1} X T)) U) (Quiver.Hom.{succ u1, succ u1} TopCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1})) (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))))) TopCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) TopCat.{u1} instTopCatLargeCategory.{u1} (TopologicalSpace.Opens.toTopCat.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U)) T)
-Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Top_obj TopCat.presheafToTop_objₓ'. -/
 @[simp]
 theorem presheafToTop_obj (T : TopCat.{v}) (U : (Opens X)ᵒᵖ) :
     (presheafToTop X T).obj U = ((Opens.toTopCat X).obj (unop U) ⟶ T) :=
@@ -161,12 +140,6 @@ def pullback {X Y : TopCatᵒᵖ} (f : X ⟶ Y) (R : TopCommRingCat) :
 #align Top.continuous_functions.pullback TopCat.continuousFunctions.pullback
 -/
 
-/- warning: Top.continuous_functions.map -> TopCat.continuousFunctions.map is a dubious translation:
-lean 3 declaration is
-  forall (X : Opposite.{succ (succ u1)} TopCat.{u1}) {R : TopCommRingCat.{u1}} {S : TopCommRingCat.{u1}}, (Quiver.Hom.{succ u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.CategoryTheory.category.{u1})) R S) -> (Quiver.Hom.{succ u1, succ u1} CommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} CommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} CommRingCat.{u1} CommRingCat.largeCategory.{u1})) (TopCat.continuousFunctions.{u1} X R) (TopCat.continuousFunctions.{u1} X S))
-but is expected to have type
-  forall (X : Opposite.{succ (succ u1)} TopCat.{u1}) {R : TopCommRingCat.{u1}} {S : TopCommRingCat.{u1}}, (Quiver.Hom.{succ u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.instCategoryTopCommRingCat.{u1})) R S) -> (Quiver.Hom.{succ u1, succ u1} CommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} CommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} CommRingCat.{u1} instCommRingCatLargeCategory.{u1})) (TopCat.continuousFunctions.{u1} X R) (TopCat.continuousFunctions.{u1} X S))
-Case conversion may be inaccurate. Consider using '#align Top.continuous_functions.map TopCat.continuousFunctions.mapₓ'. -/
 /-- A homomorphism of topological rings can be postcomposed with functions from a source space `X`;
 this is a ring homomorphism (with respect to the pointwise ring operations on functions). -/
 def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
@@ -181,12 +154,6 @@ def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
 
 end ContinuousFunctions
 
-/- warning: Top.CommRing_yoneda -> TopCat.commRingYoneda is a dubious translation:
-lean 3 declaration is
-  CategoryTheory.Functor.{u1, succ u1, succ u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.CategoryTheory.category.{u1} (CategoryTheory.Functor.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} TopCat.largeCategory.{u1}) CommRingCat.{u1} CommRingCat.largeCategory.{u1}) (CategoryTheory.Functor.category.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} TopCat.largeCategory.{u1}) CommRingCat.{u1} CommRingCat.largeCategory.{u1})
-but is expected to have type
-  CategoryTheory.Functor.{u1, succ u1, succ u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.instCategoryTopCommRingCat.{u1} (CategoryTheory.Functor.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1}) CommRingCat.{u1} instCommRingCatLargeCategory.{u1}) (CategoryTheory.Functor.category.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1}) CommRingCat.{u1} instCommRingCatLargeCategory.{u1})
-Case conversion may be inaccurate. Consider using '#align Top.CommRing_yoneda TopCat.commRingYonedaₓ'. -/
 /-- An upgraded version of the Yoneda embedding, observing that the continuous maps
 from `X : Top` to `R : TopCommRing` form a commutative ring, functorial in both `X` and `R`. -/
 def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
Diff
@@ -54,9 +54,7 @@ def presheafToTypes (T : X → Type v) : X.Presheaf (Type v)
     where
   obj U := ∀ x : unop U, T x
   map U V i g := fun x : unop V => g (i.unop x)
-  map_id' U := by
-    ext (g⟨x, hx⟩)
-    rfl
+  map_id' U := by ext (g⟨x, hx⟩); rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Types TopCat.presheafToTypes
 -/
@@ -93,9 +91,7 @@ def presheafToType (T : Type v) : X.Presheaf (Type v)
     where
   obj U := unop U → T
   map U V i g := g ∘ i.unop
-  map_id' U := by
-    ext (g⟨x, hx⟩)
-    rfl
+  map_id' U := by ext (g⟨x, hx⟩); rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Type TopCat.presheafToType
 -/
@@ -198,16 +194,12 @@ def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
   obj R :=
     { obj := fun X => continuousFunctions X R
       map := fun X Y f => continuousFunctions.pullback f R
-      map_id' := fun X => by
-        ext
-        rfl
+      map_id' := fun X => by ext; rfl
       map_comp' := fun X Y Z f g => rfl }
   map R S φ :=
     { app := fun X => continuousFunctions.map X φ
       naturality' := fun X Y f => rfl }
-  map_id' X := by
-    ext
-    rfl
+  map_id' X := by ext; rfl
   map_comp' X Y Z f g := rfl
 #align Top.CommRing_yoneda TopCat.commRingYoneda
 
Diff
@@ -62,10 +62,7 @@ def presheafToTypes (T : X → Type v) : X.Presheaf (Type v)
 -/
 
 /- warning: Top.presheaf_to_Types_obj -> TopCat.presheafToTypes_obj is a dubious translation:
-lean 3 declaration is
-  forall (X : TopCat.{u1}) {T : (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) U) (forall (x : coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)), T ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (coeSubtype.{succ u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (fun (x : coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) => Membership.Mem.{u1, u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.hasMem.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)))))) x))
-but is expected to have type
-  forall (X : TopCat.{u1}) {T : (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) U) (forall (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))), T (Subtype.val.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (Set.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) (Set.instMembershipSet.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) x (SetLike.coe.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))) x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Types_obj TopCat.presheafToTypes_objₓ'. -/
 @[simp]
 theorem presheafToTypes_obj {T : X → Type v} {U : (Opens X)ᵒᵖ} :
@@ -74,10 +71,7 @@ theorem presheafToTypes_obj {T : X → Type v} {U : (Opens X)ᵒᵖ} :
 #align Top.presheaf_to_Types_obj TopCat.presheafToTypes_obj
 
 /- warning: Top.presheaf_to_Types_map -> TopCat.presheafToTypes_map is a dubious translation:
-lean 3 declaration is
-  forall (X : TopCat.{u1}) {T : (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))))) U V} {f : CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) U}, Eq.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) V) (CategoryTheory.Functor.map.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) U V i f) (fun (x : coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) => f (coeFn.{succ u1, succ u1} (Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (fun (f : Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) => (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) -> (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U))) (TopologicalSpace.Opens.opensHomHasCoeToFun.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) U V i) x))
-but is expected to have type
-  forall (X : TopCat.{u1}) {T : (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) U V} {f : Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) U}, Eq.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) V) (Prefunctor.map.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) U V i f) (fun (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) => f ((fun (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) => Subtype.mk.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U)) (Subtype.val.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (Set.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) (Set.instMembershipSet.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) x (SetLike.coe.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) x) (TopologicalSpace.Opens.opensHomHasCoeToFun.proof_1.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))))) U V i) x)) x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Types_map TopCat.presheafToTypes_mapₓ'. -/
 @[simp]
 theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
@@ -119,10 +113,7 @@ theorem presheafToType_obj {T : Type v} {U : (Opens X)ᵒᵖ} :
 #align Top.presheaf_to_Type_obj TopCat.presheafToType_obj
 
 /- warning: Top.presheaf_to_Type_map -> TopCat.presheafToType_map is a dubious translation:
-lean 3 declaration is
-  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))))) U V} {f : CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) U}, Eq.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) V) (CategoryTheory.Functor.map.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) U V i f) (Function.comp.{succ u1, succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) T f (coeFn.{succ u1, succ u1} (Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (fun (f : Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) => (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) -> (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U))) (TopologicalSpace.Opens.opensHomHasCoeToFun.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) U V i)))
-but is expected to have type
-  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) U V} {f : Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) U}, Eq.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) V) (Prefunctor.map.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) U V i f) (Function.comp.{succ u1, succ u1, succ u1} (Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) (Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))) T f (fun (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) => Subtype.mk.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U)) (Subtype.val.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (Set.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) (Set.instMembershipSet.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) x (SetLike.coe.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) x) (TopologicalSpace.Opens.opensHomHasCoeToFun.proof_1.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))))) U V i) x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Type_map TopCat.presheafToType_mapₓ'. -/
 @[simp]
 theorem presheafToType_map {T : Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 
 ! This file was ported from Lean 3 source module topology.sheaves.presheaf_of_functions
-! leanprover-community/mathlib commit 6c31dd6563a3745bf8e0b80bdd077167583ebb8f
+! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -16,6 +16,9 @@ import Mathbin.Topology.ContinuousFunction.Algebra
 /-!
 # Presheaves of functions
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We construct some simple examples of presheaves of functions on a topological space.
 * `presheaf_to_Types X T`, where `T : X → Type`,
   is the presheaf of dependently-typed (not-necessarily continuous) functions
Diff
@@ -43,6 +43,7 @@ namespace TopCat
 
 variable (X : TopCat.{v})
 
+#print TopCat.presheafToTypes /-
 /-- The presheaf of dependently typed functions on `X`, with fibres given by a type family `T`.
 There is no requirement that the functions are continuous, here.
 -/
@@ -55,19 +56,33 @@ def presheafToTypes (T : X → Type v) : X.Presheaf (Type v)
     rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Types TopCat.presheafToTypes
+-/
 
+/- warning: Top.presheaf_to_Types_obj -> TopCat.presheafToTypes_obj is a dubious translation:
+lean 3 declaration is
+  forall (X : TopCat.{u1}) {T : (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) U) (forall (x : coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)), T ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (coeSubtype.{succ u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (fun (x : coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) => Membership.Mem.{u1, u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.hasMem.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)))))) x))
+but is expected to have type
+  forall (X : TopCat.{u1}) {T : (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) U) (forall (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))), T (Subtype.val.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (Set.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) (Set.instMembershipSet.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) x (SetLike.coe.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))) x))
+Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Types_obj TopCat.presheafToTypes_objₓ'. -/
 @[simp]
 theorem presheafToTypes_obj {T : X → Type v} {U : (Opens X)ᵒᵖ} :
     (presheafToTypes X T).obj U = ∀ x : unop U, T x :=
   rfl
 #align Top.presheaf_to_Types_obj TopCat.presheafToTypes_obj
 
+/- warning: Top.presheaf_to_Types_map -> TopCat.presheafToTypes_map is a dubious translation:
+lean 3 declaration is
+  forall (X : TopCat.{u1}) {T : (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))))) U V} {f : CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) U}, Eq.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) V) (CategoryTheory.Functor.map.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T) U V i f) (fun (x : coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) => f (coeFn.{succ u1, succ u1} (Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (fun (f : Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) => (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) -> (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U))) (TopologicalSpace.Opens.opensHomHasCoeToFun.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) U V i) x))
+but is expected to have type
+  forall (X : TopCat.{u1}) {T : (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) -> Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) U V} {f : Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) U}, Eq.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) V) (Prefunctor.map.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTypes.{u1} X T)) U V i f) (fun (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) => f ((fun (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) => Subtype.mk.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U)) (Subtype.val.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (Set.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) (Set.instMembershipSet.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) x (SetLike.coe.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) x) (TopologicalSpace.Opens.opensHomHasCoeToFun.proof_1.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))))) U V i) x)) x))
+Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Types_map TopCat.presheafToTypes_mapₓ'. -/
 @[simp]
 theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
     (presheafToTypes X T).map i f = fun x => f (i.unop x) :=
   rfl
 #align Top.presheaf_to_Types_map TopCat.presheafToTypes_map
 
+#print TopCat.presheafToType /-
 -- We don't just define this in terms of `presheaf_to_Types`,
 -- as it's helpful later to see (at a syntactic level) that `(presheaf_to_Type X T).obj U`
 -- is a non-dependent function.
@@ -86,40 +101,64 @@ def presheafToType (T : Type v) : X.Presheaf (Type v)
     rfl
   map_comp' U V W i j := rfl
 #align Top.presheaf_to_Type TopCat.presheafToType
+-/
 
+/- warning: Top.presheaf_to_Type_obj -> TopCat.presheafToType_obj is a dubious translation:
+lean 3 declaration is
+  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) U) ((coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) -> T)
+but is expected to have type
+  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))}, Eq.{succ (succ u1)} Type.{u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) U) ((Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))) -> T)
+Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Type_obj TopCat.presheafToType_objₓ'. -/
 @[simp]
 theorem presheafToType_obj {T : Type v} {U : (Opens X)ᵒᵖ} :
     (presheafToType X T).obj U = (unop U → T) :=
   rfl
 #align Top.presheaf_to_Type_obj TopCat.presheafToType_obj
 
+/- warning: Top.presheaf_to_Type_map -> TopCat.presheafToType_map is a dubious translation:
+lean 3 declaration is
+  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))))) U V} {f : CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) U}, Eq.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) V) (CategoryTheory.Functor.map.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T) U V i f) (Function.comp.{succ u1, succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) T f (coeFn.{succ u1, succ u1} (Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (fun (f : Quiver.Hom.{succ u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) => (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V)) -> (coeSort.{succ u1, succ (succ u1)} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U))) (TopologicalSpace.Opens.opensHomHasCoeToFun.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))))) U V i)))
+but is expected to have type
+  forall (X : TopCat.{u1}) {T : Type.{u1}} {U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {V : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))} {i : Quiver.Hom.{succ u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (Quiver.opposite.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) U V} {f : Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) U}, Eq.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) V) (Prefunctor.map.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToType.{u1} X T)) U V i f) (Function.comp.{succ u1, succ u1, succ u1} (Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) (Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U))) T f (fun (x : Subtype.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) => Subtype.mk.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (SetLike.instMembership.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) x (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U)) (Subtype.val.{succ u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (fun (x : CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) => Membership.mem.{u1, u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (Set.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) (Set.instMembershipSet.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X)) x (SetLike.coe.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopologicalSpace.Opens.instSetLikeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V))) x) (TopologicalSpace.Opens.opensHomHasCoeToFun.proof_1.{u1} X (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) V) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U) (Quiver.Hom.unop.{u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (OmegaCompletePartialOrder.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))))) U V i) x)))
+Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Type_map TopCat.presheafToType_mapₓ'. -/
 @[simp]
 theorem presheafToType_map {T : Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f} :
     (presheafToType X T).map i f = f ∘ i.unop :=
   rfl
 #align Top.presheaf_to_Type_map TopCat.presheafToType_map
 
+#print TopCat.presheafToTop /-
 /-- The presheaf of continuous functions on `X` with values in fixed target topological space
 `T`. -/
 def presheafToTop (T : TopCat.{v}) : X.Presheaf (Type v) :=
   (Opens.toTopCat X).op ⋙ yoneda.obj T
 #align Top.presheaf_to_Top TopCat.presheafToTop
+-/
 
+/- warning: Top.presheaf_to_Top_obj -> TopCat.presheafToTop_obj is a dubious translation:
+lean 3 declaration is
+  forall (X : TopCat.{u1}) (T : TopCat.{u1}) (U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))), Eq.{succ (succ u1)} Type.{u1} (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTop.{u1} X T) U) (Quiver.Hom.{succ u1, succ u1} TopCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCat.{u1} TopCat.largeCategory.{u1})) (CategoryTheory.Functor.obj.{u1, u1, u1, succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (SetLike.partialOrder.{u1, u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopologicalSpace.Opens.setLike.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X))))) TopCat.{u1} TopCat.largeCategory.{u1} (TopologicalSpace.Opens.toTopCat.{u1} X) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (coeSort.{succ (succ u1), succ (succ u1)} TopCat.{u1} Type.{u1} TopCat.hasCoeToSort.{u1} X) (TopCat.topologicalSpace.{u1} X)) U)) T)
+but is expected to have type
+  forall (X : TopCat.{u1}) (T : TopCat.{u1}) (U : Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))), Eq.{succ (succ u1)} Type.{u1} (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))))) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (Opposite.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))) (CategoryTheory.Category.opposite.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X))))))) Type.{u1} CategoryTheory.types.{u1} (TopCat.presheafToTop.{u1} X T)) U) (Quiver.Hom.{succ u1, succ u1} TopCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1})) (Prefunctor.obj.{succ u1, succ u1, u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))))) TopCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (Preorder.smallCategory.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (PartialOrder.toPreorder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteSemilatticeInf.toPartialOrder.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) (TopologicalSpace.Opens.instCompleteLatticeOpens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)))))) TopCat.{u1} instTopCatLargeCategory.{u1} (TopologicalSpace.Opens.toTopCat.{u1} X)) (Opposite.unop.{succ u1} (TopologicalSpace.Opens.{u1} (CategoryTheory.Bundled.α.{u1, u1} TopologicalSpace.{u1} X) (TopCat.topologicalSpace_coe.{u1} X)) U)) T)
+Case conversion may be inaccurate. Consider using '#align Top.presheaf_to_Top_obj TopCat.presheafToTop_objₓ'. -/
 @[simp]
 theorem presheafToTop_obj (T : TopCat.{v}) (U : (Opens X)ᵒᵖ) :
     (presheafToTop X T).obj U = ((Opens.toTopCat X).obj (unop U) ⟶ T) :=
   rfl
 #align Top.presheaf_to_Top_obj TopCat.presheafToTop_obj
 
+#print TopCat.continuousFunctions /-
 -- TODO upgrade the result to TopCommRing?
 /-- The (bundled) commutative ring of continuous functions from a topological space
 to a topological commutative ring, with pointwise multiplication. -/
 def continuousFunctions (X : TopCat.{v}ᵒᵖ) (R : TopCommRingCat.{v}) : CommRingCat.{v} :=
   CommRingCat.of (unop X ⟶ (forget₂ TopCommRingCat TopCat).obj R)
 #align Top.continuous_functions TopCat.continuousFunctions
+-/
 
 namespace ContinuousFunctions
 
+#print TopCat.continuousFunctions.pullback /-
 /-- Pulling back functions into a topological ring along a continuous map is a ring homomorphism. -/
 def pullback {X Y : TopCatᵒᵖ} (f : X ⟶ Y) (R : TopCommRingCat) :
     continuousFunctions X R ⟶ continuousFunctions Y R
@@ -130,7 +169,14 @@ def pullback {X Y : TopCatᵒᵖ} (f : X ⟶ Y) (R : TopCommRingCat) :
   map_add' := by tidy
   map_mul' := by tidy
 #align Top.continuous_functions.pullback TopCat.continuousFunctions.pullback
+-/
 
+/- warning: Top.continuous_functions.map -> TopCat.continuousFunctions.map is a dubious translation:
+lean 3 declaration is
+  forall (X : Opposite.{succ (succ u1)} TopCat.{u1}) {R : TopCommRingCat.{u1}} {S : TopCommRingCat.{u1}}, (Quiver.Hom.{succ u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.CategoryTheory.category.{u1})) R S) -> (Quiver.Hom.{succ u1, succ u1} CommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} CommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} CommRingCat.{u1} CommRingCat.largeCategory.{u1})) (TopCat.continuousFunctions.{u1} X R) (TopCat.continuousFunctions.{u1} X S))
+but is expected to have type
+  forall (X : Opposite.{succ (succ u1)} TopCat.{u1}) {R : TopCommRingCat.{u1}} {S : TopCommRingCat.{u1}}, (Quiver.Hom.{succ u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} TopCommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.instCategoryTopCommRingCat.{u1})) R S) -> (Quiver.Hom.{succ u1, succ u1} CommRingCat.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} CommRingCat.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} CommRingCat.{u1} instCommRingCatLargeCategory.{u1})) (TopCat.continuousFunctions.{u1} X R) (TopCat.continuousFunctions.{u1} X S))
+Case conversion may be inaccurate. Consider using '#align Top.continuous_functions.map TopCat.continuousFunctions.mapₓ'. -/
 /-- A homomorphism of topological rings can be postcomposed with functions from a source space `X`;
 this is a ring homomorphism (with respect to the pointwise ring operations on functions). -/
 def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
@@ -145,6 +191,12 @@ def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
 
 end ContinuousFunctions
 
+/- warning: Top.CommRing_yoneda -> TopCat.commRingYoneda is a dubious translation:
+lean 3 declaration is
+  CategoryTheory.Functor.{u1, succ u1, succ u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.CategoryTheory.category.{u1} (CategoryTheory.Functor.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} TopCat.largeCategory.{u1}) CommRingCat.{u1} CommRingCat.largeCategory.{u1}) (CategoryTheory.Functor.category.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} TopCat.largeCategory.{u1}) CommRingCat.{u1} CommRingCat.largeCategory.{u1})
+but is expected to have type
+  CategoryTheory.Functor.{u1, succ u1, succ u1, succ u1} TopCommRingCat.{u1} TopCommRingCat.instCategoryTopCommRingCat.{u1} (CategoryTheory.Functor.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1}) CommRingCat.{u1} instCommRingCatLargeCategory.{u1}) (CategoryTheory.Functor.category.{u1, u1, succ u1, succ u1} (Opposite.{succ (succ u1)} TopCat.{u1}) (CategoryTheory.Category.opposite.{u1, succ u1} TopCat.{u1} instTopCatLargeCategory.{u1}) CommRingCat.{u1} instCommRingCatLargeCategory.{u1})
+Case conversion may be inaccurate. Consider using '#align Top.CommRing_yoneda TopCat.commRingYonedaₓ'. -/
 /-- An upgraded version of the Yoneda embedding, observing that the continuous maps
 from `X : Top` to `R : TopCommRing` form a commutative ring, functorial in both `X` and `R`. -/
 def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
@@ -165,6 +217,7 @@ def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
   map_comp' X Y Z f g := rfl
 #align Top.CommRing_yoneda TopCat.commRingYoneda
 
+#print TopCat.presheafToTopCommRing /-
 /-- The presheaf (of commutative rings), consisting of functions on an open set `U ⊆ X` with
 values in some topological commutative ring `T`.
 
@@ -177,6 +230,7 @@ presheaf_to_TopCommRing X (TopCommRing.of ℂ)
 def presheafToTopCommRing (T : TopCommRingCat.{v}) : X.Presheaf CommRingCat.{v} :=
   (Opens.toTopCat X).op ⋙ commRingYoneda.obj T
 #align Top.presheaf_to_TopCommRing TopCat.presheafToTopCommRing
+-/
 
 end TopCat
 
Diff
@@ -114,14 +114,14 @@ theorem presheafToTop_obj (T : TopCat.{v}) (U : (Opens X)ᵒᵖ) :
 -- TODO upgrade the result to TopCommRing?
 /-- The (bundled) commutative ring of continuous functions from a topological space
 to a topological commutative ring, with pointwise multiplication. -/
-def continuousFunctions (X : TopCat.{v}ᵒᵖ) (R : TopCommRing.{v}) : CommRingCat.{v} :=
-  CommRingCat.of (unop X ⟶ (forget₂ TopCommRing TopCat).obj R)
+def continuousFunctions (X : TopCat.{v}ᵒᵖ) (R : TopCommRingCat.{v}) : CommRingCat.{v} :=
+  CommRingCat.of (unop X ⟶ (forget₂ TopCommRingCat TopCat).obj R)
 #align Top.continuous_functions TopCat.continuousFunctions
 
 namespace ContinuousFunctions
 
 /-- Pulling back functions into a topological ring along a continuous map is a ring homomorphism. -/
-def pullback {X Y : TopCatᵒᵖ} (f : X ⟶ Y) (R : TopCommRing) :
+def pullback {X Y : TopCatᵒᵖ} (f : X ⟶ Y) (R : TopCommRingCat) :
     continuousFunctions X R ⟶ continuousFunctions Y R
     where
   toFun g := f.unop ≫ g
@@ -133,10 +133,10 @@ def pullback {X Y : TopCatᵒᵖ} (f : X ⟶ Y) (R : TopCommRing) :
 
 /-- A homomorphism of topological rings can be postcomposed with functions from a source space `X`;
 this is a ring homomorphism (with respect to the pointwise ring operations on functions). -/
-def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRing.{u}} (φ : R ⟶ S) :
+def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
     continuousFunctions X R ⟶ continuousFunctions X S
     where
-  toFun g := g ≫ (forget₂ TopCommRing TopCat).map φ
+  toFun g := g ≫ (forget₂ TopCommRingCat TopCat).map φ
   map_one' := by ext <;> exact φ.1.map_one
   map_zero' := by ext <;> exact φ.1.map_zero
   map_add' := by intros <;> ext <;> apply φ.1.map_add
@@ -147,7 +147,7 @@ end ContinuousFunctions
 
 /-- An upgraded version of the Yoneda embedding, observing that the continuous maps
 from `X : Top` to `R : TopCommRing` form a commutative ring, functorial in both `X` and `R`. -/
-def commRingYoneda : TopCommRing.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
+def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u}
     where
   obj R :=
     { obj := fun X => continuousFunctions X R
@@ -174,7 +174,7 @@ presheaf_to_TopCommRing X (TopCommRing.of ℂ)
 ```
 (this requires `import topology.instances.complex`).
 -/
-def presheafToTopCommRing (T : TopCommRing.{v}) : X.Presheaf CommRingCat.{v} :=
+def presheafToTopCommRing (T : TopCommRingCat.{v}) : X.Presheaf CommRingCat.{v} :=
   (Opens.toTopCat X).op ⋙ commRingYoneda.obj T
 #align Top.presheaf_to_TopCommRing TopCat.presheafToTopCommRing
 
Diff
@@ -102,12 +102,12 @@ theorem presheafToType_map {T : Type v} {U V : (Opens X)ᵒᵖ} {i : U ⟶ V} {f
 /-- The presheaf of continuous functions on `X` with values in fixed target topological space
 `T`. -/
 def presheafToTop (T : TopCat.{v}) : X.Presheaf (Type v) :=
-  (Opens.toTop X).op ⋙ yoneda.obj T
+  (Opens.toTopCat X).op ⋙ yoneda.obj T
 #align Top.presheaf_to_Top TopCat.presheafToTop
 
 @[simp]
 theorem presheafToTop_obj (T : TopCat.{v}) (U : (Opens X)ᵒᵖ) :
-    (presheafToTop X T).obj U = ((Opens.toTop X).obj (unop U) ⟶ T) :=
+    (presheafToTop X T).obj U = ((Opens.toTopCat X).obj (unop U) ⟶ T) :=
   rfl
 #align Top.presheaf_to_Top_obj TopCat.presheafToTop_obj
 
@@ -175,7 +175,7 @@ presheaf_to_TopCommRing X (TopCommRing.of ℂ)
 (this requires `import topology.instances.complex`).
 -/
 def presheafToTopCommRing (T : TopCommRing.{v}) : X.Presheaf CommRingCat.{v} :=
-  (Opens.toTop X).op ⋙ commRingYoneda.obj T
+  (Opens.toTopCat X).op ⋙ commRingYoneda.obj T
 #align Top.presheaf_to_TopCommRing TopCat.presheafToTopCommRing
 
 end TopCat

Changes in mathlib4

mathlib3
mathlib4
style: reduce spacing variation in "porting note" comments (#10886)

In this pull request, I have systematically eliminated the leading whitespace preceding the colon (:) within all unlabelled or unclassified porting notes. This adjustment facilitates a more efficient review process for the remaining notes by ensuring no entries are overlooked due to formatting inconsistencies.

Diff
@@ -118,7 +118,7 @@ set_option linter.uppercaseLean3 false in
 /-- The (bundled) commutative ring of continuous functions from a topological space
 to a topological commutative ring, with pointwise multiplication. -/
 def continuousFunctions (X : TopCat.{v}ᵒᵖ) (R : TopCommRingCat.{v}) : CommRingCat.{v} :=
-  -- Porting note : Lean did not see through that `X.unop ⟶ R` is just continuous functions
+  -- Porting note: Lean did not see through that `X.unop ⟶ R` is just continuous functions
   -- hence forms a ring
   @CommRingCat.of (X.unop ⟶ (forget₂ TopCommRingCat TopCat).obj R) <|
   show CommRing (ContinuousMap _ _) by infer_instance
@@ -143,7 +143,7 @@ this is a ring homomorphism (with respect to the pointwise ring operations on fu
 def map (X : TopCat.{u}ᵒᵖ) {R S : TopCommRingCat.{u}} (φ : R ⟶ S) :
     continuousFunctions X R ⟶ continuousFunctions X S where
   toFun g := g ≫ (forget₂ TopCommRingCat TopCat).map φ
-  -- Porting note : `ext` tactic does not work, since Lean can't see through `R ⟶ S` is just
+  -- Porting note: `ext` tactic does not work, since Lean can't see through `R ⟶ S` is just
   -- continuous ring homomorphism
   map_one' := ContinuousMap.ext fun _ => φ.1.map_one
   map_zero' := ContinuousMap.ext fun _ => φ.1.map_zero
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2019 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
-
-! This file was ported from Lean 3 source module topology.sheaves.presheaf_of_functions
-! leanprover-community/mathlib commit 5dc6092d09e5e489106865241986f7f2ad28d4c8
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.CategoryTheory.Yoneda
 import Mathlib.Topology.Sheaves.Presheaf
 import Mathlib.Topology.Category.TopCommRingCat
 import Mathlib.Topology.ContinuousFunction.Algebra
 
+#align_import topology.sheaves.presheaf_of_functions from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8"
+
 /-!
 # Presheaves of functions
 
chore: update SHAs after #19153 was reverted (#5712)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 
 ! This file was ported from Lean 3 source module topology.sheaves.presheaf_of_functions
-! leanprover-community/mathlib commit 6c31dd6563a3745bf8e0b80bdd077167583ebb8f
+! leanprover-community/mathlib commit 5dc6092d09e5e489106865241986f7f2ad28d4c8
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
chore: bump to nightly-2023-05-31 (#4530)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Alex J Best <alex.j.best@gmail.com>

Diff
@@ -50,7 +50,7 @@ def presheafToTypes (T : X → Type v) : X.Presheaf (Type v) where
   obj U := ∀ x : U.unop, T x
   map {U V} i g := fun x : V.unop => g (i.unop x)
   map_id U := by
-    ext g ⟨x, hx⟩
+    ext g
     rfl
   map_comp {U V W} i j := rfl
 set_option linter.uppercaseLean3 false in
@@ -83,7 +83,7 @@ def presheafToType (T : Type v) : X.Presheaf (Type v) where
   obj U := U.unop → T
   map {U V} i g := g ∘ i.unop
   map_id U := by
-    ext (g⟨x, hx⟩)
+    ext g
     rfl
   map_comp {U V W} i j := rfl
 set_option linter.uppercaseLean3 false in
chore: tidy various files (#4304)

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -70,11 +70,11 @@ theorem presheafToTypes_map {T : X → Type v} {U V : (Opens X)ᵒᵖ} {i : U 
 set_option linter.uppercaseLean3 false in
 #align Top.presheaf_to_Types_map TopCat.presheafToTypes_map
 
--- We don't just define this in terms of `presheaf_to_Types`,
--- as it's helpful later to see (at a syntactic level) that `(presheaf_to_Type X T).obj U`
+-- We don't just define this in terms of `presheafToTypes`,
+-- as it's helpful later to see (at a syntactic level) that `(presheafToType X T).obj U`
 -- is a non-dependent function.
 -- We don't use `@[simps]` to generate the projection lemmas here,
--- as it turns out to be useful to have `presheaf_to_Type_map`
+-- as it turns out to be useful to have `presheafToType_map`
 -- written as an equality of functions (rather than being applied to some argument).
 /-- The presheaf of functions on `X` with values in a type `T`.
 There is no requirement that the functions are continuous, here.
@@ -183,9 +183,9 @@ values in some topological commutative ring `T`.
 
 For example, we could construct the presheaf of continuous complex valued functions of `X` as
 ```
-presheaf_to_TopCommRing X (TopCommRing.of ℂ)
+presheafToTopCommRing X (TopCommRing.of ℂ)
 ```
-(this requires `import topology.instances.complex`).
+(this requires `import Topology.Instances.Complex`).
 -/
 def presheafToTopCommRing (T : TopCommRingCat.{v}) : X.Presheaf CommRingCat.{v} :=
   (Opens.toTopCat X).op ⋙ commRingYoneda.obj T
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -21,7 +21,7 @@ We construct some simple examples of presheaves of functions on a topological sp
   is the presheaf of dependently-typed (not-necessarily continuous) functions
 * `presheafToType X T`, where `T : Type`,
   is the presheaf of (not-necessarily-continuous) functions to a fixed target type `T`
-* `presheafToTop X T`, where `T : Top`,
+* `presheafToTop X T`, where `T : TopCat`,
   is the presheaf of continuous functions into a topological space `T`
 * `presheafToTopCommRing X R`, where `R : TopCommRingCat`
   is the presheaf valued in `CommRing` of functions functions into a topological ring `R`
@@ -158,7 +158,8 @@ set_option linter.uppercaseLean3 false in
 end continuousFunctions
 
 /-- An upgraded version of the Yoneda embedding, observing that the continuous maps
-from `X : Top` to `R : TopCommRing` form a commutative ring, functorial in both `X` and `R`. -/
+from `X : TopCat` to `R : TopCommRingCat` form a commutative ring, functorial in both `X` and
+`R`. -/
 def commRingYoneda : TopCommRingCat.{u} ⥤ TopCat.{u}ᵒᵖ ⥤ CommRingCat.{u} where
   obj R :=
     { obj := fun X => continuousFunctions X R
feat: port Topology.Sheaves.PresheafOfFunctions (#4092)

Dependencies 9 + 630

631 files ported (98.6%)
263232 lines ported (98.1%)
Show graph

The unported dependencies are