Documentation

Mathlib.Topology.Sheaves.PresheafOfFunctions

Presheaves of functions #

We construct some simple examples of presheaves of functions on a topological space.

def TopCat.presheafToTypes (X : TopCat) (T : XType v) :

The presheaf of dependently typed functions on X, with fibres given by a type family T. There is no requirement that the functions are continuous, here.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem TopCat.presheafToTypes_obj (X : TopCat) {T : XType v} {U : (TopologicalSpace.Opens X)ᵒᵖ} :
    (X.presheafToTypes T).obj U = ((x : (Opposite.unop U)) → T x)
    @[simp]
    theorem TopCat.presheafToTypes_map (X : TopCat) {T : XType v} {U V : (TopologicalSpace.Opens X)ᵒᵖ} {i : U V} {f : (X.presheafToTypes T).obj U} :
    (X.presheafToTypes T).map i f = fun (x : (Opposite.unop V)) => f (i.unop x)

    The presheaf of functions on X with values in a type T. There is no requirement that the functions are continuous, here.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem TopCat.presheafToType_obj (X : TopCat) {T : Type v} {U : (TopologicalSpace.Opens X)ᵒᵖ} :
      (X.presheafToType T).obj U = ((Opposite.unop U)T)
      @[simp]
      theorem TopCat.presheafToType_map (X : TopCat) {T : Type v} {U V : (TopologicalSpace.Opens X)ᵒᵖ} {i : U V} {f : (X.presheafToType T).obj U} :
      (X.presheafToType T).map i f = f i.unop

      The presheaf of continuous functions on X with values in fixed target topological space T.

      Equations
      Instances For