Documentation

Mathlib.Topology.Category.TopCat.Basic

Category instance for topological spaces #

We introduce the bundled category TopCat of topological spaces together with the functors TopCat.discrete and TopCat.trivial from the category of types to TopCat which equip a type with the corresponding discrete, resp. trivial, topology. For a proof that these functors are left, resp. right adjoint to the forgetful functor, see Mathlib.Topology.Category.TopCat.Adjunctions.

def TopCat :
Type (u + 1)

The category of topological spaces and continuous maps.

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    theorem TopCat.comp_app {X : TopCat} {Y : TopCat} {Z : TopCat} (f : X Y) (g : Y Z) (x : X) :

    Construct a bundled Top from the underlying type and the typeclass.

    Equations
    Instances For
      @[simp]
      theorem TopCat.coe_of (X : Type u) [TopologicalSpace X] :
      (TopCat.of X) = X
      theorem TopCat.hom_apply {X : TopCat} {Y : TopCat} (f : X Y) (x : X) :
      f x = f.toFun x

      The discrete topology on any type.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The trivial topology on any type.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          def TopCat.isoOfHomeo {X : TopCat} {Y : TopCat} (f : X ≃ₜ Y) :
          X Y

          Any homeomorphisms induces an isomorphism in Top.

          Equations
          Instances For
            @[simp]
            theorem TopCat.homeoOfIso_apply {X : TopCat} {Y : TopCat} (f : X Y) (a : (CategoryTheory.forget TopCat).obj X) :
            (TopCat.homeoOfIso f) a = f.hom a
            @[simp]
            theorem TopCat.homeoOfIso_symm_apply {X : TopCat} {Y : TopCat} (f : X Y) (a : (CategoryTheory.forget TopCat).obj Y) :
            def TopCat.homeoOfIso {X : TopCat} {Y : TopCat} (f : X Y) :
            X ≃ₜ Y

            Any isomorphism in Top induces a homeomorphism.

            Equations
            • TopCat.homeoOfIso f = { toEquiv := { toFun := f.hom, invFun := f.inv, left_inv := , right_inv := }, continuous_toFun := , continuous_invFun := }
            Instances For
              @[simp]
              theorem TopCat.of_isoOfHomeo {X : TopCat} {Y : TopCat} (f : X ≃ₜ Y) :
              @[simp]