Documentation

Mathlib.Topology.Category.TopCat.Basic

Category instance for topological spaces #

We introduce the bundled category TopCat of topological spaces together with the functors TopCat.discrete and TopCat.trivial from the category of types to TopCat which equip a type with the corresponding discrete, resp. trivial, topology. For a proof that these functors are left, resp. right adjoint to the forgetful functor, see Mathlib/Topology/Category/TopCat/Adjunctions.lean.

structure TopCat :
Type (u + 1)

The category of topological spaces.

Instances For
    theorem TopCat.coe_of (X : Type u) [TopologicalSpace X] :
    { carrier := X, str := inst✝ } = X
    theorem TopCat.of_carrier (X : TopCat) :
    { carrier := X, str := X.str } = X
    structure TopCat.Hom (X Y : TopCat) :

    The type of morphisms in TopCat.

    Instances For
      theorem TopCat.Hom.ext {X Y : TopCat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
      x = y
      theorem TopCat.Hom.ext_iff {X Y : TopCat} {x y : X.Hom Y} :
      x = y x.hom' = y.hom'
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.
      @[reducible, inline]
      abbrev TopCat.Hom.hom {X Y : TopCat} (f : X.Hom Y) :
      C(X, Y)

      Turn a morphism in TopCat back into a ContinuousMap.

      Equations
      Instances For
        @[reducible, inline]
        abbrev TopCat.ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) :
        { carrier := X, str := inst✝ } { carrier := Y, str := inst✝¹ }

        Typecheck a ContinuousMap as a morphism in TopCat.

        Equations
        Instances For
          def TopCat.Hom.Simps.hom (X Y : TopCat) (f : X.Hom Y) :
          C(X, Y)

          Use the ConcreteCategory.hom projection for @[simps] lemmas.

          Equations
          Instances For

            The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

            @[simp]
            theorem TopCat.hom_comp {X Y Z : TopCat} (f : X Y) (g : Y Z) :
            theorem TopCat.hom_ext {X Y : TopCat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
            f = g
            theorem TopCat.hom_ext_iff {X Y : TopCat} {f g : X Y} :
            theorem TopCat.ext {X Y : TopCat} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
            f = g
            @[simp]
            theorem TopCat.hom_ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) :
            @[simp]
            theorem TopCat.ofHom_hom {X Y : TopCat} (f : X Y) :
            @[simp]
            theorem TopCat.ofHom_id {X : Type u} [TopologicalSpace X] :
            ofHom (ContinuousMap.id X) = CategoryTheory.CategoryStruct.id { carrier := X, str := inst✝ }
            @[simp]
            theorem TopCat.coe_of_of {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] {f : C(X, Y)} {x : (CategoryTheory.forget TopCat).obj { carrier := X, str := inst✝ }} :
            (ofHom f) x = f x

            Replace a function coercion for a morphism TopCat.of X ⟶ TopCat.of Y with the definitionally equal function coercion for a continuous map C(X, Y).

            The discrete topology on any type.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The trivial topology on any type.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def TopCat.isoOfHomeo {X Y : TopCat} (f : X ≃ₜ Y) :
                X Y

                Any homeomorphisms induces an isomorphism in Top.

                Equations
                Instances For
                  @[simp]
                  theorem TopCat.isoOfHomeo_inv {X Y : TopCat} (f : X ≃ₜ Y) :
                  @[simp]
                  theorem TopCat.isoOfHomeo_hom {X Y : TopCat} (f : X ≃ₜ Y) :
                  def TopCat.homeoOfIso {X Y : TopCat} (f : X Y) :
                  X ≃ₜ Y

                  Any isomorphism in Top induces a homeomorphism.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem TopCat.homeoOfIso_apply {X Y : TopCat} (f : X Y) (a : X) :
                    @[simp]
                    @[simp]
                    theorem TopCat.of_isoOfHomeo {X Y : TopCat} (f : X ≃ₜ Y) :
                    @[simp]
                    theorem TopCat.of_homeoOfIso {X Y : TopCat} (f : X Y) :