Documentation

Mathlib.Topology.Category.TopCat.Basic

Category instance for topological spaces #

We introduce the bundled category TopCat of topological spaces together with the functors TopCat.discrete and TopCat.trivial from the category of types to TopCat which equip a type with the corresponding discrete, resp. trivial, topology. For a proof that these functors are left, resp. right adjoint to the forgetful functor, see Mathlib.Topology.Category.TopCat.Adjunctions.

structure TopCat :
Type (u + 1)

The category of semirings.

Instances For
    @[reducible, inline]

    The object in TopCat associated to a type equipped with the appropriate typeclasses. This is the preferred way to construct a term of TopCat.

    Equations
    Instances For
      theorem TopCat.coe_of (X : Type u) [TopologicalSpace X] :
      (of X) = X
      theorem TopCat.of_carrier (X : TopCat) :
      of X = X
      structure TopCat.Hom (X Y : TopCat) :

      The type of morphisms in TopCat.

      Instances For
        theorem TopCat.Hom.ext {X Y : TopCat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev TopCat.Hom.hom {X Y : TopCat} (f : X.Hom Y) :
        C(X, Y)

        Turn a morphism in TopCat back into a ContinuousMap.

        Equations
        Instances For
          @[reducible, inline]
          abbrev TopCat.ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) :
          of X of Y

          Typecheck a ContinuousMap as a morphism in TopCat.

          Equations
          Instances For
            def TopCat.Hom.Simps.hom (X Y : TopCat) (f : X.Hom Y) :
            C(X, Y)

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              @[simp]
              theorem TopCat.hom_comp {X Y Z : TopCat} (f : X Y) (g : Y Z) :
              theorem TopCat.hom_ext {X Y : TopCat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
              f = g
              theorem TopCat.ext {X Y : TopCat} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
              f = g
              @[simp]
              theorem TopCat.hom_ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) :
              @[simp]
              theorem TopCat.ofHom_hom {X Y : TopCat} (f : X Y) :
              @[simp]
              theorem TopCat.coe_of_of {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] {f : C(X, Y)} {x : (CategoryTheory.forget TopCat).obj (of X)} :
              (ofHom f) x = f x

              Replace a function coercion for a morphism TopCat.of X ⟶ TopCat.of Y with the definitionally equal function coercion for a continuous map C(X, Y).

              @[deprecated "Simply remove this from the `simp`/`rw` set: the LHS and RHS are now identical." (since := "2025-01-30")]
              theorem TopCat.hom_apply {X Y : TopCat} (f : X Y) (x : X) :

              The discrete topology on any type.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The trivial topology on any type.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  def TopCat.isoOfHomeo {X Y : TopCat} (f : X ≃ₜ Y) :
                  X Y

                  Any homeomorphisms induces an isomorphism in Top.

                  Equations
                  Instances For
                    @[simp]
                    theorem TopCat.isoOfHomeo_hom {X Y : TopCat} (f : X ≃ₜ Y) :
                    @[simp]
                    theorem TopCat.isoOfHomeo_inv {X Y : TopCat} (f : X ≃ₜ Y) :
                    def TopCat.homeoOfIso {X Y : TopCat} (f : X Y) :
                    X ≃ₜ Y

                    Any isomorphism in Top induces a homeomorphism.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem TopCat.homeoOfIso_apply {X Y : TopCat} (f : X Y) (a : X) :
                      @[simp]
                      @[simp]
                      theorem TopCat.of_isoOfHomeo {X Y : TopCat} (f : X ≃ₜ Y) :
                      @[simp]
                      theorem TopCat.of_homeoOfIso {X Y : TopCat} (f : X Y) :