Documentation

Mathlib.Logic.Function.Defs

General operations on functions #

theorem Function.flip_def {α : Sort u₁} {β : Sort u₂} {φ : Sort u₃} {f : αβφ} :
flip f = fun (b : β) (a : α) => f a b
@[reducible, inline]
def Function.dcomp {α : Sort u₁} {β : αSort u₂} {φ : {x : α} → β xSort u₃} (f : {x : α} → (y : β x) → φ y) (g : (x : α) → β x) (x : α) :
φ (g x)

Composition of dependent functions: (f ∘' g) x = f (g x), where type of g x depends on x and type of f (g x) depends on x and g x.

Equations
Instances For
    @[reducible, inline]
    abbrev Function.onFun {α : Sort u₁} {β : Sort u₂} {φ : Sort u₃} (f : ββφ) (g : αβ) :
    ααφ

    Given functions f : β → β → φ and g : α → β, produce a function α → α → φ that evaluates g on each argument, then applies f to the results. Can be used, e.g., to transfer a relation from β to α.

    Equations
    • (f on g) x y = f (g x) (g y)
    Instances For

      Given functions f : β → β → φ and g : α → β, produce a function α → α → φ that evaluates g on each argument, then applies f to the results. Can be used, e.g., to transfer a relation from β to α.

      Equations
      Instances For
        @[reducible, inline]
        abbrev Function.swap {α : Sort u₁} {β : Sort u₂} {φ : αβSort u₃} (f : (x : α) → (y : β) → φ x y) (y : β) (x : α) :
        φ x y
        Equations
        Instances For
          theorem Function.swap_def {α : Sort u₁} {β : Sort u₂} {φ : αβSort u₃} (f : (x : α) → (y : β) → φ x y) :
          Function.swap f = fun (y : β) (x : α) => f x y
          @[simp]
          theorem Function.id_comp {α : Sort u₁} {β : Sort u₂} (f : αβ) :
          id f = f
          @[simp]
          theorem Function.comp_id {α : Sort u₁} {β : Sort u₂} (f : αβ) :
          f id = f
          theorem Function.comp_assoc {α : Sort u₁} {β : Sort u₂} {φ : Sort u₃} {δ : Sort u₄} (f : φδ) (g : βφ) (h : αβ) :
          (f g) h = f g h
          @[deprecated Function.comp_assoc]
          theorem Function.comp.assoc {α : Sort u₁} {β : Sort u₂} {φ : Sort u₃} {δ : Sort u₄} (f : φδ) (g : βφ) (h : αβ) :
          (f g) h = f g h

          Alias of Function.comp_assoc.

          def Function.Injective {α : Sort u₁} {β : Sort u₂} (f : αβ) :

          A function f : α → β is called injective if f x = f y implies x = y.

          Equations
          Instances For
            theorem Function.Injective.comp {α : Sort u₁} {β : Sort u₂} {φ : Sort u₃} {g : βφ} {f : αβ} (hg : Function.Injective g) (hf : Function.Injective f) :
            def Function.Surjective {α : Sort u₁} {β : Sort u₂} (f : αβ) :

            A function f : α → β is called surjective if every b : β is equal to f a for some a : α.

            Equations
            Instances For
              theorem Function.Surjective.comp {α : Sort u₁} {β : Sort u₂} {φ : Sort u₃} {g : βφ} {f : αβ} (hg : Function.Surjective g) (hf : Function.Surjective f) :
              def Function.Bijective {α : Sort u₁} {β : Sort u₂} (f : αβ) :

              A function is called bijective if it is both injective and surjective.

              Equations
              Instances For
                theorem Function.Bijective.comp {α : Sort u₁} {β : Sort u₂} {φ : Sort u₃} {g : βφ} {f : αβ} :
                def Function.LeftInverse {α : Sort u₁} {β : Sort u₂} (g : βα) (f : αβ) :

                LeftInverse g f means that g is a left inverse to f. That is, g ∘ f = id.

                Equations
                Instances For
                  def Function.HasLeftInverse {α : Sort u₁} {β : Sort u₂} (f : αβ) :

                  HasLeftInverse f means that f has an unspecified left inverse.

                  Equations
                  Instances For
                    def Function.RightInverse {α : Sort u₁} {β : Sort u₂} (g : βα) (f : αβ) :

                    RightInverse g f means that g is a right inverse to f. That is, f ∘ g = id.

                    Equations
                    Instances For
                      def Function.HasRightInverse {α : Sort u₁} {β : Sort u₂} (f : αβ) :

                      HasRightInverse f means that f has an unspecified right inverse.

                      Equations
                      Instances For
                        theorem Function.LeftInverse.injective {α : Sort u₁} {β : Sort u₂} {g : βα} {f : αβ} :
                        theorem Function.HasLeftInverse.injective {α : Sort u₁} {β : Sort u₂} {f : αβ} :
                        theorem Function.rightInverse_of_injective_of_leftInverse {α : Sort u₁} {β : Sort u₂} {f : αβ} {g : βα} (injf : Function.Injective f) (lfg : Function.LeftInverse f g) :
                        theorem Function.RightInverse.surjective {α : Sort u₁} {β : Sort u₂} {f : αβ} {g : βα} (h : Function.RightInverse g f) :
                        theorem Function.leftInverse_of_surjective_of_rightInverse {α : Sort u₁} {β : Sort u₂} {f : αβ} {g : βα} (surjf : Function.Surjective f) (rfg : Function.RightInverse f g) :
                        theorem Function.LeftInverse.id {α : Type u₁} {β : Type u₂} {g : βα} {f : αβ} (h : Function.LeftInverse g f) :
                        g f = id
                        theorem Function.RightInverse.id {α : Type u₁} {β : Type u₂} {g : βα} {f : αβ} (h : Function.RightInverse g f) :
                        f g = id
                        def Function.IsFixedPt {α : Type u₁} (f : αα) (x : α) :

                        A point x is a fixed point of f : α → α if f x = x.

                        Equations
                        Instances For
                          def Pi.map {ι : Sort u_1} {α : ιSort u_2} {β : ιSort u_3} (f : (i : ι) → α iβ i) :
                          ((i : ι) → α i)(i : ι) → β i

                          Sends a dependent function a : ∀ i, α i to a dependent function Pi.map f a : ∀ i, β i by applying f i to i-th component.

                          Equations
                          Instances For
                            @[simp]
                            theorem Pi.map_apply {ι : Sort u_1} {α : ιSort u_2} {β : ιSort u_3} (f : (i : ι) → α iβ i) (a : (i : ι) → α i) (i : ι) :
                            Pi.map f a i = f i (a i)