Documentation

Archive.Imo.Imo1961Q3

IMO 1961 Q3 #

Solve the equation

$\cos^n x - \sin^n x = 1$,

where $n$ is a given positive integer.

The solution is based on the one at the Art of Problem Solving website.

theorem Imo1961Q3 {n : } {x : } (h₀ : n 0) :
Real.cos x ^ n - Real.sin x ^ n = 1 (∃ (k : ), k * Real.pi = x) Even n (∃ (k : ), k * (2 * Real.pi) = x) Odd n (∃ (k : ), -(Real.pi / 2) + k * (2 * Real.pi) = x) Odd n