IMO 2001 Q2 #
Let $a$, $b$, $c$ be positive reals. Prove that $$ \frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} ≥ 1. $$
Solution #
This proof is based on the bound $$ \frac{a}{\sqrt{a^2 + 8bc}} ≥ \frac{a^{\frac43}}{a^{\frac43} + b^{\frac43} + c^{\frac43}}. $$