Documentation

Archive.Imo.Imo2005Q3

IMO 2005 Q3 #

Let x, y and z be positive real numbers such that xyz ≥ 1. Prove that: (x^5 - x^2)/(x^5 + y^2 + z^2) + (y^5 - y^2)/(y^5 + z^2 + x^2) + (z^5 - z^2)/(z^5 + x^2 + y^2) ≥ 0

Solution #

The solution by Iurie Boreico from Moldova is presented, which won a special prize during the exam. The key insight is that (x^5-x^2)/(x^5+y^2+z^2) ≥ (x^2-y*z)/(x^2+y^2+z^2), which is proven by factoring (x^5-x^2)/(x^5+y^2+z^2) - (x^5-x^2)/(x^3*(x^2+y^2+z^2)) into a non-negative expression and then making use of xyz ≥ 1 to show (x^5-x^2)/(x^3*(x^2+y^2+z^2)) ≥ (x^2-y*z)/(x^2+y^2+z^2).

theorem Imo2005Q3.key_insight (x : ) (y : ) (z : ) (hx : x > 0) (hy : y > 0) (hz : z > 0) (h : x * y * z 1) :
(x ^ 5 - x ^ 2) / (x ^ 5 + y ^ 2 + z ^ 2) (x ^ 2 - y * z) / (x ^ 2 + y ^ 2 + z ^ 2)
theorem imo2005_q3 (x : ) (y : ) (z : ) (hx : x > 0) (hy : y > 0) (hz : z > 0) (h : x * y * z 1) :
(x ^ 5 - x ^ 2) / (x ^ 5 + y ^ 2 + z ^ 2) + (y ^ 5 - y ^ 2) / (y ^ 5 + z ^ 2 + x ^ 2) + (z ^ 5 - z ^ 2) / (z ^ 5 + x ^ 2 + y ^ 2) 0