Documentation

Archive.Imo.Imo2008Q4

IMO 2008 Q4 #

Find all functions f : (0,∞) → (0,∞) (so, f is a function from the positive real numbers to the positive real numbers) such that (f(w)^2 + f(x)^2)/(f(y^2) + f(z^2)) = (w^2 + x^2)/(y^2 + z^2) ``` for all positive real numbers w, x, y, z, satisfying wx = yz.

Solution #

The desired theorem is that either f = fun x => x or f = fun x => 1/x

theorem Imo2008Q4.abs_eq_one_of_pow_eq_one (x : ) (n : ) (hn : n 0) (h : x ^ n = 1) :
|x| = 1
theorem imo2008_q4 (f : ) (H₁ : x > 0, f x > 0) :
(∀ (w x y z : ), 0 < w0 < x0 < y0 < zw * x = y * z(f w ^ 2 + f x ^ 2) / (f (y ^ 2) + f (z ^ 2)) = (w ^ 2 + x ^ 2) / (y ^ 2 + z ^ 2)) (∀ x > 0, f x = x) x > 0, f x = 1 / x