Documentation

Archive.Imo.Imo2013Q1

IMO 2013 Q1 #

Prove that for any pair of positive integers k and n, there exist k positive integers m₁, m₂, ..., mₖ (not necessarily different) such that

1 + (2ᵏ - 1)/ n = (1 + 1/m₁) * (1 + 1/m₂) * ... * (1 + 1/mₖ).

Solution #

Adaptation of the solution found in https://www.imo-official.org/problems/IMO2013SL.pdf

We prove a slightly more general version where k does not need to be strictly positive.

theorem Imo2013Q1.arith_lemma (k n : ) :
0 < 2 * n + 2 ^ k.succ
theorem Imo2013Q1.prod_lemma (m : ℕ+) (k : ) (nm : ℕ+) :
iFinset.range k, (1 + 1 / (if i < k then m i else nm)) = iFinset.range k, (1 + 1 / (m i))
theorem imo2013_q1 (n : ℕ+) (k : ) :
∃ (m : ℕ+), 1 + (2 ^ k - 1) / n = iFinset.range k, (1 + 1 / (m i))