Documentation

Batteries.Data.Array.Pairwise

def Array.Pairwise {α : Type u_1} (R : ααProp) (as : Array α) :

Pairwise R as means that all the elements of the array as are R-related to all elements with larger indices.

Pairwise R #[1, 2, 3] ↔ R 1 2 ∧ R 1 3 ∧ R 2 3

For example as.Pairwise (· ≠ ·) asserts that as has no duplicates, as.Pairwise (· < ·) asserts that as is strictly sorted and as.Pairwise (· ≤ ·) asserts that as is weakly sorted.

Equations
Instances For
    theorem Array.pairwise_iff_get {α : Type u_1} {R : ααProp} {as : Array α} :
    Pairwise R as ∀ (i j : Fin as.size), i < jR (as.get i ) (as.get j )
    theorem Array.pairwise_iff_getElem {α : Type u_1} {R : ααProp} {as : Array α} :
    Pairwise R as ∀ (i j : Nat) (x : i < as.size) (x_1 : j < as.size), i < jR as[i] as[j]
    instance Array.instDecidablePairwiseOfDecidableRel {α : Type u_1} (R : ααProp) [DecidableRel R] (as : Array α) :
    Equations
    theorem Array.pairwise_empty {α✝ : Type u_1} {R : α✝α✝Prop} :
    Pairwise R #[]
    theorem Array.pairwise_singleton {α : Type u_1} (R : ααProp) (a : α) :
    Pairwise R #[a]
    theorem Array.pairwise_pair {α✝ : Type u_1} {a b : α✝} {R : α✝α✝Prop} :
    Pairwise R #[a, b] R a b
    theorem Array.pairwise_append {α : Type u_1} {R : ααProp} {as bs : Array α} :
    Pairwise R (as ++ bs) Pairwise R as Pairwise R bs ∀ (x : α), x as∀ (y : α), y bsR x y
    theorem Array.pairwise_push {α : Type u_1} {a : α} {R : ααProp} {as : Array α} :
    Pairwise R (as.push a) Pairwise R as ∀ (x : α), x asR x a
    theorem Array.pairwise_extract {α : Type u_1} {R : ααProp} {as : Array α} (h : Pairwise R as) (start stop : Nat) :
    Pairwise R (as.extract start stop)