Documentation

Batteries.Data.BinomialHeap.Lemmas

theorem Batteries.BinomialHeap.Imp.Heap.findMin_val {α : Type u_1} {s : Heap α} {le : ααBool} {k : Heap αHeap α} {res : FindMin α} :
(findMin le k s res).val = headD le res.val s
theorem Batteries.BinomialHeap.Imp.Heap.deleteMin_fst {α : Type u_1} {s : Heap α} {le : ααBool} :
Option.map (fun (x : α × Heap α) => x.fst) (deleteMin le s) = head? le s
@[simp]
theorem Batteries.BinomialHeap.Imp.HeapNode.WF.realSize_eq {α : Type u_1} {le : ααBool} {a : α} {n : Nat} {s : HeapNode α} :
WF le a s ns.realSize + 1 = 2 ^ n
@[simp]
theorem Batteries.BinomialHeap.Imp.Heap.WF.size_eq {α : Type u_1} {le : ααBool} {n : Nat} {s : Heap α} :
WF le n ss.size = s.realSize