Documentation

Batteries.Data.Nat.Bisect

@[reducible, inline]
abbrev Nat.avg (a b : Nat) :

Average of two natural numbers rounded toward zero.

Equations
  • a.avg b = (a + b) / 2
Instances For
    theorem Nat.avg_comm (a b : Nat) :
    a.avg b = b.avg a
    theorem Nat.avg_le_left {b a : Nat} (h : b a) :
    a.avg b a
    theorem Nat.avg_le_right {a b : Nat} (h : a b) :
    a.avg b b
    theorem Nat.avg_lt_left {b a : Nat} (h : b < a) :
    a.avg b < a
    theorem Nat.avg_lt_right {a b : Nat} (h : a < b) :
    a.avg b < b
    theorem Nat.le_avg_left {a b : Nat} (h : a b) :
    a a.avg b
    theorem Nat.le_avg_right {b a : Nat} (h : b a) :
    b a.avg b
    theorem Nat.le_add_one_of_avg_eq_left {a b : Nat} (h : a.avg b = a) :
    b a + 1
    theorem Nat.le_add_one_of_avg_eq_right {a b : Nat} (h : a.avg b = b) :
    a b + 1
    @[irreducible]
    def Nat.bisect {start stop : Nat} {p : NatBool} (h : start < stop) (hstart : p start = true) (hstop : p stop = false) :

    Given natural numbers a < b such that p a = true and p b = false, bisect finds a natural number a ≤ c < b such that p c = true and p (c+1) = false.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[irreducible]
      theorem Nat.bisect_lt_stop {start stop : Nat} {p : NatBool} (h : start < stop) (hstart : p start = true) (hstop : p stop = false) :
      bisect h hstart hstop < stop
      @[irreducible]
      theorem Nat.start_le_bisect {start stop : Nat} {p : NatBool} (h : start < stop) (hstart : p start = true) (hstop : p stop = false) :
      start bisect h hstart hstop
      @[irreducible]
      theorem Nat.bisect_true {start stop : Nat} {p : NatBool} (h : start < stop) (hstart : p start = true) (hstop : p stop = false) :
      p (bisect h hstart hstop) = true
      @[irreducible]
      theorem Nat.bisect_add_one_false {start stop : Nat} {p : NatBool} (h : start < stop) (hstart : p start = true) (hstop : p stop = false) :
      p (bisect h hstart hstop + 1) = false