Documentation

Batteries.Data.PairingHeap

A Heap is the nodes of the pairing heap. Each node have two pointers: child going to the first child of this node, and sibling goes to the next sibling of this tree. So it actually encodes a forest where each node has children node.child, node.child.sibling, node.child.sibling.sibling, etc.

Each edge in this forest denotes a le a b relation that has been checked, so the root is smaller than everything else under it.

  • nil {α : Type u} : Heap α

    An empty forest, which has depth 0.

  • node {α : Type u} (a : α) (child sibling : Heap α) : Heap α

    A forest consists of a root a, a forest child elements greater than a, and another forest sibling.

Instances For

    O(n). The number of elements in the heap.

    Equations
    Instances For

      O(1). Is the heap empty?

      Equations
      Instances For
        @[specialize #[]]
        def Batteries.PairingHeapImp.Heap.merge {α : Type u_1} (le : ααBool) :
        Heap αHeap αHeap α

        O(1). Merge two heaps. Ignore siblings.

        Equations
        Instances For
          @[specialize #[]]
          def Batteries.PairingHeapImp.Heap.combine {α : Type u_1} (le : ααBool) :
          Heap αHeap α

          Auxiliary for Heap.deleteMin: merge the forest in pairs.

          Equations
          Instances For
            @[inline]
            def Batteries.PairingHeapImp.Heap.headD {α : Type u_1} (a : α) :
            Heap αα

            O(1). Get the smallest element in the heap, including the passed in value a.

            Equations
            Instances For
              @[inline]

              O(1). Get the smallest element in the heap, if it has an element.

              Equations
              Instances For
                @[inline]
                def Batteries.PairingHeapImp.Heap.deleteMin {α : Type u_1} (le : ααBool) :
                Heap αOption (α × Heap α)

                Amortized O(log n). Find and remove the the minimum element from the heap.

                Equations
                Instances For
                  @[inline]
                  def Batteries.PairingHeapImp.Heap.tail? {α : Type u_1} (le : ααBool) (h : Heap α) :

                  Amortized O(log n). Get the tail of the pairing heap after removing the minimum element.

                  Equations
                  Instances For
                    @[inline]
                    def Batteries.PairingHeapImp.Heap.tail {α : Type u_1} (le : ααBool) (h : Heap α) :
                    Heap α

                    Amortized O(log n). Remove the minimum element of the heap.

                    Equations
                    Instances For

                      A predicate says there is no more than one tree.

                      • nil {α : Type u_1} : Heap.nil.NoSibling

                        An empty heap is no more than one tree.

                      • node {α : Type u_1} (a : α) (c : Heap α) : (Heap.node a c Heap.nil).NoSibling

                        Or there is exactly one tree.

                      Instances For
                        theorem Batteries.PairingHeapImp.Heap.noSibling_merge {α : Type u_1} (le : ααBool) (s₁ s₂ : Heap α) :
                        (merge le s₁ s₂).NoSibling
                        theorem Batteries.PairingHeapImp.Heap.noSibling_combine {α : Type u_1} (le : ααBool) (s : Heap α) :
                        (combine le s).NoSibling
                        theorem Batteries.PairingHeapImp.Heap.noSibling_deleteMin {α : Type u_1} {le : ααBool} {a : α} {s' s : Heap α} (eq : deleteMin le s = some (a, s')) :
                        s'.NoSibling
                        theorem Batteries.PairingHeapImp.Heap.noSibling_tail? {α : Type u_1} {le : ααBool} {s' s : Heap α} :
                        tail? le s = some s's'.NoSibling
                        theorem Batteries.PairingHeapImp.Heap.noSibling_tail {α : Type u_1} (le : ααBool) (s : Heap α) :
                        (tail le s).NoSibling
                        theorem Batteries.PairingHeapImp.Heap.size_merge_node {α : Type u_1} (le : ααBool) (a₁ : α) (c₁ s₁ : Heap α) (a₂ : α) (c₂ s₂ : Heap α) :
                        (merge le (node a₁ c₁ s₁) (node a₂ c₂ s₂)).size = c₁.size + c₂.size + 2
                        theorem Batteries.PairingHeapImp.Heap.size_merge {α : Type u_1} (le : ααBool) {s₁ s₂ : Heap α} (h₁ : s₁.NoSibling) (h₂ : s₂.NoSibling) :
                        (merge le s₁ s₂).size = s₁.size + s₂.size
                        @[irreducible]
                        theorem Batteries.PairingHeapImp.Heap.size_combine {α : Type u_1} (le : ααBool) (s : Heap α) :
                        (combine le s).size = s.size
                        theorem Batteries.PairingHeapImp.Heap.size_deleteMin {α : Type u_1} {le : ααBool} {a : α} {s' s : Heap α} (h : s.NoSibling) (eq : deleteMin le s = some (a, s')) :
                        s.size = s'.size + 1
                        theorem Batteries.PairingHeapImp.Heap.size_tail? {α : Type u_1} {le : ααBool} {s' s : Heap α} (h : s.NoSibling) :
                        tail? le s = some s's.size = s'.size + 1
                        theorem Batteries.PairingHeapImp.Heap.size_tail {α : Type u_1} (le : ααBool) {s : Heap α} (h : s.NoSibling) :
                        (tail le s).size = s.size - 1
                        theorem Batteries.PairingHeapImp.Heap.size_deleteMin_lt {α : Type u_1} {le : ααBool} {a : α} {s' s : Heap α} (eq : deleteMin le s = some (a, s')) :
                        s'.size < s.size
                        theorem Batteries.PairingHeapImp.Heap.size_tail?_lt {α : Type u_1} {le : ααBool} {s' s : Heap α} :
                        tail? le s = some s's'.size < s.size
                        @[irreducible, specialize #[]]
                        def Batteries.PairingHeapImp.Heap.foldM {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (le : ααBool) (s : Heap α) (init : β) (f : βαm β) :
                        m β

                        O(n log n). Monadic fold over the elements of a heap in increasing order, by repeatedly pulling the minimum element out of the heap.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[inline]
                          def Batteries.PairingHeapImp.Heap.fold {α : Type u_1} {β : Type u_2} (le : ααBool) (s : Heap α) (init : β) (f : βαβ) :
                          β

                          O(n log n). Fold over the elements of a heap in increasing order, by repeatedly pulling the minimum element out of the heap.

                          Equations
                          Instances For
                            @[inline]
                            def Batteries.PairingHeapImp.Heap.toArray {α : Type u_1} (le : ααBool) (s : Heap α) :

                            O(n log n). Convert the heap to an array in increasing order.

                            Equations
                            Instances For
                              @[inline]
                              def Batteries.PairingHeapImp.Heap.toList {α : Type u_1} (le : ααBool) (s : Heap α) :
                              List α

                              O(n log n). Convert the heap to a list in increasing order.

                              Equations
                              Instances For
                                @[specialize #[]]
                                def Batteries.PairingHeapImp.Heap.foldTreeM {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} [Monad m] (nil : β) (join : αββm β) :
                                Heap αm β

                                O(n). Fold a monadic function over the tree structure to accumulate a value.

                                Equations
                                Instances For
                                  @[inline]
                                  def Batteries.PairingHeapImp.Heap.foldTree {β : Type u_1} {α : Type u_2} (nil : β) (join : αβββ) (s : Heap α) :
                                  β

                                  O(n). Fold a function over the tree structure to accumulate a value.

                                  Equations
                                  Instances For

                                    O(n). Convert the heap to a list in arbitrary order.

                                    Equations
                                    Instances For

                                      O(n). Convert the heap to an array in arbitrary order.

                                      Equations
                                      Instances For
                                        def Batteries.PairingHeapImp.Heap.NodeWF {α : Type u_1} (le : ααBool) (a : α) :
                                        Heap αProp

                                        The well formedness predicate for a heap node. It asserts that:

                                        • If a is added at the top to make the forest into a tree, the resulting tree is a le-min-heap (if le is well-behaved)
                                        Equations
                                        Instances For
                                          inductive Batteries.PairingHeapImp.Heap.WF {α : Type u_1} (le : ααBool) :
                                          Heap αProp

                                          The well formedness predicate for a pairing heap. It asserts that:

                                          • There is no more than one tree.
                                          • It is a le-min-heap (if le is well-behaved)
                                          Instances For
                                            theorem Batteries.PairingHeapImp.Heap.WF.singleton {α✝ : Type u_1} {a : α✝} {le : α✝α✝Bool} :
                                            theorem Batteries.PairingHeapImp.Heap.WF.merge_node {α✝ : Type u_1} {le : α✝α✝Bool} {a₁ : α✝} {c₁ : Heap α✝} {a₂ : α✝} {c₂ s₁ s₂ : Heap α✝} (h₁ : NodeWF le a₁ c₁) (h₂ : NodeWF le a₂ c₂) :
                                            WF le (Heap.merge le (Heap.node a₁ c₁ s₁) (Heap.node a₂ c₂ s₂))
                                            theorem Batteries.PairingHeapImp.Heap.WF.merge {α✝ : Type u_1} {le : α✝α✝Bool} {s₁ s₂ : Heap α✝} (h₁ : WF le s₁) (h₂ : WF le s₂) :
                                            WF le (Heap.merge le s₁ s₂)
                                            theorem Batteries.PairingHeapImp.Heap.WF.combine {α✝ : Type u_1} {le : α✝α✝Bool} {s : Heap α✝} {a : α✝} (h : NodeWF le a s) :
                                            WF le (Heap.combine le s)
                                            theorem Batteries.PairingHeapImp.Heap.WF.deleteMin {α : Type u_1} {le : ααBool} {a : α} {s' s : Heap α} (h : WF le s) (eq : Heap.deleteMin le s = some (a, s')) :
                                            WF le s'
                                            theorem Batteries.PairingHeapImp.Heap.WF.tail? {α : Type u_1} {s : Heap α} {le : ααBool} {tl : Heap α} (hwf : WF le s) :
                                            Heap.tail? le s = some tlWF le tl
                                            theorem Batteries.PairingHeapImp.Heap.WF.tail {α : Type u_1} {s : Heap α} {le : ααBool} (hwf : WF le s) :
                                            WF le (Heap.tail le s)
                                            theorem Batteries.PairingHeapImp.Heap.deleteMin_fst {α : Type u_1} {s : Heap α} {le : ααBool} :
                                            Option.map (fun (x : α × Heap α) => x.fst) (deleteMin le s) = s.head?
                                            def Batteries.PairingHeap (α : Type u) (le : ααBool) :

                                            A pairing heap is a data structure which supports the following primary operations:

                                            The first two operations are known as a "priority queue", so this could be called a "mergeable priority queue". The standard choice for a priority queue is a binary heap, which supports insert and deleteMin in O(log n), but merge is O(n). With a PairingHeap, insert and merge are O(1), deleteMin is amortized O(log n).

                                            Note that deleteMin may be O(n) in a single operation. So if you need an efficient persistent priority queue, you should use other data structures with better worst-case time.

                                            Equations
                                            Instances For
                                              @[inline]
                                              def Batteries.mkPairingHeap (α : Type u) (le : ααBool) :

                                              O(1). Make a new empty pairing heap.

                                              Equations
                                              Instances For
                                                @[inline]
                                                def Batteries.PairingHeap.empty {α : Type u} {le : ααBool} :

                                                O(1). Make a new empty pairing heap.

                                                Equations
                                                Instances For
                                                  @[inline]
                                                  def Batteries.PairingHeap.isEmpty {α : Type u} {le : ααBool} (b : PairingHeap α le) :

                                                  O(1). Is the heap empty?

                                                  Equations
                                                  • b.isEmpty = b.val.isEmpty
                                                  Instances For
                                                    @[inline]
                                                    def Batteries.PairingHeap.size {α : Type u} {le : ααBool} (b : PairingHeap α le) :

                                                    O(n). The number of elements in the heap.

                                                    Equations
                                                    • b.size = b.val.size
                                                    Instances For
                                                      @[inline]
                                                      def Batteries.PairingHeap.singleton {α : Type u} {le : ααBool} (a : α) :

                                                      O(1). Make a new heap containing a.

                                                      Equations
                                                      Instances For
                                                        @[inline]
                                                        def Batteries.PairingHeap.merge {α : Type u} {le : ααBool} :
                                                        PairingHeap α lePairingHeap α lePairingHeap α le

                                                        O(1). Merge the contents of two heaps.

                                                        Equations
                                                        Instances For
                                                          @[inline]
                                                          def Batteries.PairingHeap.insert {α : Type u} {le : ααBool} (a : α) (h : PairingHeap α le) :

                                                          O(1). Add element a to the given heap h.

                                                          Equations
                                                          Instances For
                                                            def Batteries.PairingHeap.ofList {α : Type u} (le : ααBool) (as : List α) :

                                                            O(n log n). Construct a heap from a list by inserting all the elements.

                                                            Equations
                                                            Instances For
                                                              def Batteries.PairingHeap.ofArray {α : Type u} (le : ααBool) (as : Array α) :

                                                              O(n log n). Construct a heap from a list by inserting all the elements.

                                                              Equations
                                                              Instances For
                                                                @[inline]
                                                                def Batteries.PairingHeap.deleteMin {α : Type u} {le : ααBool} (b : PairingHeap α le) :
                                                                Option (α × PairingHeap α le)

                                                                Amortized O(log n). Remove and return the minimum element from the heap.

                                                                Equations
                                                                Instances For
                                                                  @[inline]
                                                                  def Batteries.PairingHeap.head? {α : Type u} {le : ααBool} (b : PairingHeap α le) :

                                                                  O(1). Returns the smallest element in the heap, or none if the heap is empty.

                                                                  Equations
                                                                  • b.head? = b.val.head?
                                                                  Instances For
                                                                    @[inline]
                                                                    def Batteries.PairingHeap.head! {α : Type u} {le : ααBool} [Inhabited α] (b : PairingHeap α le) :
                                                                    α

                                                                    O(1). Returns the smallest element in the heap, or panics if the heap is empty.

                                                                    Equations
                                                                    • b.head! = b.head?.get!
                                                                    Instances For
                                                                      @[inline]
                                                                      def Batteries.PairingHeap.headI {α : Type u} {le : ααBool} [Inhabited α] (b : PairingHeap α le) :
                                                                      α

                                                                      O(1). Returns the smallest element in the heap, or default if the heap is empty.

                                                                      Equations
                                                                      Instances For
                                                                        @[inline]
                                                                        def Batteries.PairingHeap.tail? {α : Type u} {le : ααBool} (b : PairingHeap α le) :

                                                                        Amortized O(log n). Removes the smallest element from the heap, or none if the heap is empty.

                                                                        Equations
                                                                        Instances For
                                                                          @[inline]
                                                                          def Batteries.PairingHeap.tail {α : Type u} {le : ααBool} (b : PairingHeap α le) :

                                                                          Amortized O(log n). Removes the smallest element from the heap, if possible.

                                                                          Equations
                                                                          Instances For
                                                                            @[inline]
                                                                            def Batteries.PairingHeap.toList {α : Type u} {le : ααBool} (b : PairingHeap α le) :
                                                                            List α

                                                                            O(n log n). Convert the heap to a list in increasing order.

                                                                            Equations
                                                                            Instances For
                                                                              @[inline]
                                                                              def Batteries.PairingHeap.toArray {α : Type u} {le : ααBool} (b : PairingHeap α le) :

                                                                              O(n log n). Convert the heap to an array in increasing order.

                                                                              Equations
                                                                              Instances For
                                                                                @[inline]
                                                                                def Batteries.PairingHeap.toListUnordered {α : Type u} {le : ααBool} (b : PairingHeap α le) :
                                                                                List α

                                                                                O(n). Convert the heap to a list in arbitrary order.

                                                                                Equations
                                                                                • b.toListUnordered = b.val.toListUnordered
                                                                                Instances For
                                                                                  @[inline]
                                                                                  def Batteries.PairingHeap.toArrayUnordered {α : Type u} {le : ααBool} (b : PairingHeap α le) :

                                                                                  O(n). Convert the heap to an array in arbitrary order.

                                                                                  Equations
                                                                                  • b.toArrayUnordered = b.val.toArrayUnordered
                                                                                  Instances For