Not all coefficients of cyclotomic polynomials are -1, 0, or 1 #
We show that not all coefficients of cyclotomic polynomials are equal to 0
, -1
or 1
, in the
theorem not_forall_coeff_cyclotomic_neg_one_zero_one
. We prove this with the counterexample
coeff_cyclotomic_105 : coeff (cyclotomic 105 ℤ) 7 = -2
.
theorem
Counterexample.cyclotomic_35 :
Polynomial.cyclotomic 35 ℤ = 1 - Polynomial.X + Polynomial.X ^ 5 - Polynomial.X ^ 6 + Polynomial.X ^ 7 - Polynomial.X ^ 8 + Polynomial.X ^ 10 - Polynomial.X ^ 11 + Polynomial.X ^ 12 - Polynomial.X ^ 13 + Polynomial.X ^ 14 - Polynomial.X ^ 16 + Polynomial.X ^ 17 - Polynomial.X ^ 18 + Polynomial.X ^ 19 - Polynomial.X ^ 23 + Polynomial.X ^ 24
theorem
Counterexample.cyclotomic_105 :
Polynomial.cyclotomic 105 ℤ = 1 + Polynomial.X + Polynomial.X ^ 2 - Polynomial.X ^ 5 - Polynomial.X ^ 6 - 2 * Polynomial.X ^ 7 - Polynomial.X ^ 8 - Polynomial.X ^ 9 + Polynomial.X ^ 12 + Polynomial.X ^ 13 + Polynomial.X ^ 14 + Polynomial.X ^ 15 + Polynomial.X ^ 16 + Polynomial.X ^ 17 - Polynomial.X ^ 20 - Polynomial.X ^ 22 - Polynomial.X ^ 24 - Polynomial.X ^ 26 - Polynomial.X ^ 28 + Polynomial.X ^ 31 + Polynomial.X ^ 32 + Polynomial.X ^ 33 + Polynomial.X ^ 34 + Polynomial.X ^ 35 + Polynomial.X ^ 36 - Polynomial.X ^ 39 - Polynomial.X ^ 40 - 2 * Polynomial.X ^ 41 - Polynomial.X ^ 42 - Polynomial.X ^ 43 + Polynomial.X ^ 46 + Polynomial.X ^ 47 + Polynomial.X ^ 48
theorem
Counterexample.not_forall_coeff_cyclotomic_neg_one_zero_one :
¬∀ (n i : ℕ), (Polynomial.cyclotomic n ℤ).coeff i ∈ {-1, 0, 1}