The lattice of seminorms is not distributive #
We provide an example of three seminorms over the ℝ-vector space ℝ×ℝ which don't satisfy the lattice
distributivity property (p ⊔ q1) ⊓ (p ⊔ q2) ≤ p ⊔ (q1 ⊓ q2)
.
This proves the lattice Seminorm ℝ (ℝ × ℝ)
is not distributive.
References #
Equations
- Counterexample.SeminormNotDistrib.p = (normSeminorm ℝ ℝ).comp (LinearMap.fst ℝ ℝ ℝ) ⊔ (normSeminorm ℝ ℝ).comp (LinearMap.snd ℝ ℝ ℝ)
Instances For
@[simp]
theorem
Counterexample.SeminormNotDistrib.p_toFun
(a✝ : ℝ × ℝ)
:
Counterexample.SeminormNotDistrib.p a✝ = |a✝.1| ⊔ |a✝.2|
Equations
- Counterexample.SeminormNotDistrib.q1 = 4 • (normSeminorm ℝ ℝ).comp (LinearMap.fst ℝ ℝ ℝ)
Instances For
@[simp]
theorem
Counterexample.SeminormNotDistrib.q1_toFun
(x : ℝ × ℝ)
:
Counterexample.SeminormNotDistrib.q1 x = 4 • |x.1|
Equations
- Counterexample.SeminormNotDistrib.q2 = 4 • (normSeminorm ℝ ℝ).comp (LinearMap.snd ℝ ℝ ℝ)
Instances For
@[simp]
theorem
Counterexample.SeminormNotDistrib.q2_toFun
(x : ℝ × ℝ)
:
Counterexample.SeminormNotDistrib.q2 x = 4 • |x.2|
This is a counterexample to the distributivity of the lattice Seminorm ℝ (ℝ × ℝ)
.