Documentation

Counterexamples.SeminormLatticeNotDistrib

The lattice of seminorms is not distributive #

We provide an example of three seminorms over the ℝ-vector space ℝ×ℝ which don't satisfy the lattice distributivity property (p ⊔ q1) ⊓ (p ⊔ q2) ≤ p ⊔ (q1 ⊓ q2).

This proves the lattice Seminorm ℝ (ℝ × ℝ) is not distributive.

References #

@[simp]
theorem Counterexample.SeminormNotDistrib.p_toFun (a✝ : × ) :
p a✝ = |a✝.1| |a✝.2|

This is a counterexample to the distributivity of the lattice Seminorm ℝ (ℝ × ℝ).