Documentation
Init
.
Data
.
Array
.
GetLit
Search
return to top
source
Imports
Init.Data.Array.Basic
Imported by
Array
.
getLit
Array
.
extLit
Array
.
toListLitAux
Array
.
toArrayLit
Array
.
toArrayLit_eq
Array
.
toArrayLit_eq
.
getLit_eq
Array
.
toArrayLit_eq
.
go
getLit
#
source
@[reducible, inline]
abbrev
Array
.
getLit
{α :
Type
u}
{n :
Nat
}
(a :
Array
α
)
(i :
Nat
)
(h₁ :
a
.
size
=
n
)
(h₂ :
i
<
n
)
:
α
Equations
a
.
getLit
i
h₁
h₂
=
a
[
i
]
Instances For
source
theorem
Array
.
extLit
{α :
Type
u_1}
{n :
Nat
}
(a b :
Array
α
)
(hsz₁ :
a
.
size
=
n
)
(hsz₂ :
b
.
size
=
n
)
(h :
∀ (
i
:
Nat
) (
hi
:
i
<
n
),
a
.
getLit
i
hsz₁
hi
=
b
.
getLit
i
hsz₂
hi
)
:
a
=
b
source
def
Array
.
toListLitAux
{α :
Type
u_1}
(a :
Array
α
)
(n :
Nat
)
(hsz :
a
.
size
=
n
)
(i :
Nat
)
:
i
≤
a
.
size
→
List
α
→
List
α
Equations
a
.
toListLitAux
n
hsz
0
x_3
x
=
x
a
.
toListLitAux
n
hsz
i
.
succ
hi
x
=
a
.
toListLitAux
n
hsz
i
⋯
(
a
.
getLit
i
hsz
⋯
::
x
)
Instances For
source
def
Array
.
toArrayLit
{α :
Type
u_1}
(a :
Array
α
)
(n :
Nat
)
(hsz :
a
.
size
=
n
)
:
Array
α
Equations
a
.
toArrayLit
n
hsz
=
(
a
.
toListLitAux
n
hsz
n
⋯
[
]
)
.
toArray
Instances For
source
theorem
Array
.
toArrayLit_eq
{α :
Type
u_1}
(as :
Array
α
)
(n :
Nat
)
(hsz :
as
.
size
=
n
)
:
as
=
as
.
toArrayLit
n
hsz
source
theorem
Array
.
toArrayLit_eq
.
getLit_eq
{α :
Type
u_1}
(n :
Nat
)
(as :
Array
α
)
(i :
Nat
)
(h₁ :
as
.
size
=
n
)
(h₂ :
i
<
n
)
:
as
.
getLit
i
h₁
h₂
=
as
.
toList
[
i
]
source
theorem
Array
.
toArrayLit_eq
.
go
{α :
Type
u_1}
(as :
Array
α
)
(n :
Nat
)
(hsz :
as
.
size
=
n
)
(i :
Nat
)
(hi :
i
≤
as
.
size
)
:
as
.
toListLitAux
n
hsz
i
hi
(
List.drop
i
as
.
toList
)
=
as
.
toList