Documentation

Init.Data.List.MapIdx

Operations using indexes #

mapIdx #

@[inline]
def List.mapFinIdx {α : Type u_1} {β : Type u_2} (as : List α) (f : Fin as.lengthαβ) :
List β

Given a list as = [a₀, a₁, ...] function f : Fin as.length → α → β, returns the list [f 0 a₀, f 1 a₁, ...].

Equations
Instances For
    @[specialize #[]]
    def List.mapFinIdx.go {α : Type u_1} {β : Type u_2} (as : List α) (f : Fin as.lengthαβ) (bs : List α) (acc : Array β) :
    bs.length + acc.size = as.lengthList β

    Auxiliary for mapFinIdx: mapFinIdx.go [a₀, a₁, ...] acc = acc.toList ++ [f 0 a₀, f 1 a₁, ...]

    Equations
    Instances For
      @[inline]
      def List.mapIdx {α : Type u_1} {β : Type u_2} (f : Natαβ) (as : List α) :
      List β

      Given a function f : Nat → α → β and as : List α, as = [a₀, a₁, ...], returns the list [f 0 a₀, f 1 a₁, ...].

      Equations
      Instances For
        @[specialize #[]]
        def List.mapIdx.go {α : Type u_1} {β : Type u_2} (f : Natαβ) :
        List αArray βList β

        Auxiliary for mapIdx: mapIdx.go [a₀, a₁, ...] acc = acc.toList ++ [f acc.size a₀, f (acc.size + 1) a₁, ...]

        Equations
        Instances For

          mapFinIdx #

          @[simp]
          theorem List.mapFinIdx_nil {α : Type u_1} {β : Type u_2} {f : Fin 0αβ} :
          [].mapFinIdx f = []
          @[simp]
          theorem List.length_mapFinIdx_go {α✝ : Type u_1} {as : List α✝} {α✝¹ : Type u_2} {f : Fin as.lengthα✝α✝¹} {bs : List α✝} {acc : Array α✝¹} {h : bs.length + acc.size = as.length} :
          (mapFinIdx.go as f bs acc h).length = as.length
          @[simp]
          theorem List.length_mapFinIdx {α : Type u_1} {β : Type u_2} {as : List α} {f : Fin as.lengthαβ} :
          (as.mapFinIdx f).length = as.length
          theorem List.getElem_mapFinIdx_go {α : Type u_1} {β : Type u_2} {bs : List α} {acc : Array β} {as : List α} {f : Fin as.lengthαβ} {i : Nat} {h : bs.length + acc.size = as.length} {w : i < (mapFinIdx.go as f bs acc h).length} :
          (mapFinIdx.go as f bs acc h)[i] = if w' : i < acc.size then acc[i] else f i, bs[i - acc.size]
          @[simp]
          theorem List.getElem_mapFinIdx {α : Type u_1} {β : Type u_2} {as : List α} {f : Fin as.lengthαβ} {i : Nat} {h : i < (as.mapFinIdx f).length} :
          (as.mapFinIdx f)[i] = f i, as[i]
          theorem List.mapFinIdx_eq_ofFn {α : Type u_1} {β : Type u_2} {as : List α} {f : Fin as.lengthαβ} :
          as.mapFinIdx f = ofFn fun (i : Fin as.length) => f i as[i]
          @[simp]
          theorem List.getElem?_mapFinIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Fin l.lengthαβ} {i : Nat} :
          (l.mapFinIdx f)[i]? = l[i]?.pbind fun (x : α) (m : x l[i]?) => some (f i, x)
          @[simp]
          theorem List.mapFinIdx_cons {α : Type u_1} {β : Type u_2} {l : List α} {a : α} {f : Fin (l.length + 1)αβ} :
          (a :: l).mapFinIdx f = f 0 a :: l.mapFinIdx fun (i : Fin l.length) => f i.succ
          theorem List.mapFinIdx_append {α : Type u_1} {β : Type u_2} {K L : List α} {f : Fin (K ++ L).lengthαβ} :
          (K ++ L).mapFinIdx f = (K.mapFinIdx fun (i : Fin K.length) => f (Fin.castLE i)) ++ L.mapFinIdx fun (i : Fin L.length) => f (Fin.cast (Fin.natAdd K.length i))
          @[simp]
          theorem List.mapFinIdx_concat {α : Type u_1} {β : Type u_2} {l : List α} {e : α} {f : Fin (l ++ [e]).lengthαβ} :
          (l ++ [e]).mapFinIdx f = (l.mapFinIdx fun (i : Fin l.length) => f (Fin.castLE i)) ++ [f l.length, e]
          theorem List.mapFinIdx_singleton {α : Type u_1} {β : Type u_2} {a : α} {f : Fin 1αβ} :
          [a].mapFinIdx f = [f 0, a]
          theorem List.mapFinIdx_eq_enum_map {α : Type u_1} {β : Type u_2} {l : List α} {f : Fin l.lengthαβ} :
          l.mapFinIdx f = map (fun (x : { x : Nat × α // x l.enum }) => match x with | (i, x), m => f i, x) l.enum.attach
          @[simp]
          theorem List.mapFinIdx_eq_nil_iff {α : Type u_1} {β : Type u_2} {l : List α} {f : Fin l.lengthαβ} :
          l.mapFinIdx f = [] l = []
          theorem List.mapFinIdx_ne_nil_iff {α : Type u_1} {β : Type u_2} {l : List α} {f : Fin l.lengthαβ} :
          l.mapFinIdx f [] l []
          theorem List.exists_of_mem_mapFinIdx {β : Type u_1} {α : Type u_2} {b : β} {l : List α} {f : Fin l.lengthαβ} (h : b l.mapFinIdx f) :
          ∃ (i : Fin l.length), f i l[i] = b
          @[simp]
          theorem List.mem_mapFinIdx {β : Type u_1} {α : Type u_2} {b : β} {l : List α} {f : Fin l.lengthαβ} :
          b l.mapFinIdx f ∃ (i : Fin l.length), f i l[i] = b
          theorem List.mapFinIdx_eq_cons_iff {α : Type u_1} {β : Type u_2} {l₂ : List β} {l : List α} {b : β} {f : Fin l.lengthαβ} :
          l.mapFinIdx f = b :: l₂ ∃ (a : α), ∃ (l₁ : List α), ∃ (h : l = a :: l₁), f 0, a = b (l₁.mapFinIdx fun (i : Fin l₁.length) => f (Fin.cast i.succ)) = l₂
          theorem List.mapFinIdx_eq_cons_iff' {α : Type u_1} {β : Type u_2} {l₂ : List β} {l : List α} {b : β} {f : Fin l.lengthαβ} :
          l.mapFinIdx f = b :: l₂ (l.head?.pbind fun (x : α) (m : x l.head?) => some (f 0, x)) = some b Option.map (fun (x : { x : List α // x l.tail? }) => match x with | t, m => t.mapFinIdx fun (i : Fin t.length) => f (Fin.cast i.succ)) l.tail?.attach = some l₂
          theorem List.mapFinIdx_eq_iff {α : Type u_1} {β : Type u_2} {l' : List β} {l : List α} {f : Fin l.lengthαβ} :
          l.mapFinIdx f = l' ∃ (h : l'.length = l.length), ∀ (i : Nat) (h_1 : i < l.length), l'[i] = f i, h_1 l[i]
          theorem List.mapFinIdx_eq_mapFinIdx_iff {α : Type u_1} {β : Type u_2} {l : List α} {f g : Fin l.lengthαβ} :
          l.mapFinIdx f = l.mapFinIdx g ∀ (i : Fin l.length), f i l[i] = g i l[i]
          @[simp]
          theorem List.mapFinIdx_mapFinIdx {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : List α} {f : Fin l.lengthαβ} {g : Fin (l.mapFinIdx f).lengthβγ} :
          (l.mapFinIdx f).mapFinIdx g = l.mapFinIdx fun (i : Fin l.length) => g (Fin.cast i) f i
          theorem List.mapFinIdx_eq_replicate_iff {α : Type u_1} {β : Type u_2} {l : List α} {f : Fin l.lengthαβ} {b : β} :
          l.mapFinIdx f = replicate l.length b ∀ (i : Fin l.length), f i l[i] = b
          @[simp]
          theorem List.mapFinIdx_reverse {α : Type u_1} {β : Type u_2} {l : List α} {f : Fin l.reverse.lengthαβ} :
          l.reverse.mapFinIdx f = (l.mapFinIdx fun (i : Fin l.length) => f l.length - 1 - i, ).reverse

          mapIdx #

          @[simp]
          theorem List.mapIdx_nil {α : Type u_1} {β : Type u_2} {f : Natαβ} :
          mapIdx f [] = []
          theorem List.mapIdx_go_length {β : Type u_1} {α✝ : Type u_2} {f : Natα✝β} {l : List α✝} {arr : Array β} :
          (mapIdx.go f l arr).length = l.length + arr.size
          theorem List.length_mapIdx_go {α : Type u_1} {β : Type u_2} {f : Natαβ} {l : List α} {arr : Array β} :
          (mapIdx.go f l arr).length = l.length + arr.size
          @[simp]
          theorem List.length_mapIdx {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} :
          (mapIdx f l).length = l.length
          theorem List.getElem?_mapIdx_go {α : Type u_1} {β : Type u_2} {f : Natαβ} {l : List α} {arr : Array β} {i : Nat} :
          (mapIdx.go f l arr)[i]? = if h : i < arr.size then some arr[i] else Option.map (f i) l[i - arr.size]?
          @[simp]
          theorem List.getElem?_mapIdx {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} {i : Nat} :
          (mapIdx f l)[i]? = Option.map (f i) l[i]?
          @[simp]
          theorem List.getElem_mapIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} {i : Nat} {h : i < (mapIdx f l).length} :
          (mapIdx f l)[i] = f i l[i]
          @[simp]
          theorem List.mapFinIdx_eq_mapIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Fin l.lengthαβ} {g : Natαβ} (h : ∀ (i : Fin l.length), f i l[i] = g (↑i) l[i]) :
          l.mapFinIdx f = mapIdx g l
          theorem List.mapIdx_eq_mapFinIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} :
          mapIdx f l = l.mapFinIdx fun (i : Fin l.length) => f i
          theorem List.mapIdx_eq_enum_map {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} :
          mapIdx f l = map (Function.uncurry f) l.enum
          @[simp]
          theorem List.mapIdx_cons {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} {a : α} :
          mapIdx f (a :: l) = f 0 a :: mapIdx (fun (i : Nat) => f (i + 1)) l
          theorem List.mapIdx_append {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {K L : List α} :
          mapIdx f (K ++ L) = mapIdx f K ++ mapIdx (fun (i : Nat) => f (i + K.length)) L
          @[simp]
          theorem List.mapIdx_concat {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} {e : α} :
          mapIdx f (l ++ [e]) = mapIdx f l ++ [f l.length e]
          theorem List.mapIdx_singleton {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {a : α} :
          mapIdx f [a] = [f 0 a]
          @[simp]
          theorem List.mapIdx_eq_nil_iff {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} :
          mapIdx f l = [] l = []
          theorem List.mapIdx_ne_nil_iff {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} :
          mapIdx f l [] l []
          theorem List.exists_of_mem_mapIdx {β : Type u_1} {α : Type u_2} {f : Natαβ} {b : β} {l : List α} (h : b mapIdx f l) :
          ∃ (i : Nat), ∃ (h : i < l.length), f i l[i] = b
          @[simp]
          theorem List.mem_mapIdx {β : Type u_1} {α : Type u_2} {f : Natαβ} {b : β} {l : List α} :
          b mapIdx f l ∃ (i : Nat), ∃ (h : i < l.length), f i l[i] = b
          theorem List.mapIdx_eq_cons_iff {α : Type u_1} {β : Type u_2} {f : Natαβ} {l₂ : List β} {l : List α} {b : β} :
          mapIdx f l = b :: l₂ ∃ (a : α), ∃ (l₁ : List α), l = a :: l₁ f 0 a = b mapIdx (fun (i : Nat) => f (i + 1)) l₁ = l₂
          theorem List.mapIdx_eq_cons_iff' {α : Type u_1} {β : Type u_2} {f : Natαβ} {l₂ : List β} {l : List α} {b : β} :
          mapIdx f l = b :: l₂ Option.map (f 0) l.head? = some b Option.map (mapIdx fun (i : Nat) => f (i + 1)) l.tail? = some l₂
          theorem List.mapIdx_eq_iff {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l' : List α✝} {l : List α} :
          mapIdx f l = l' ∀ (i : Nat), l'[i]? = Option.map (f i) l[i]?
          theorem List.mapIdx_eq_mapIdx_iff {α : Type u_1} {α✝ : Type u_2} {f g : Natαα✝} {l : List α} :
          mapIdx f l = mapIdx g l ∀ (i : Nat) (h : i < l.length), f i l[i] = g i l[i]
          @[simp]
          theorem List.mapIdx_set {α : Type u_1} {α✝ : Type u_2} {f : Natαα✝} {l : List α} {i : Nat} {a : α} :
          mapIdx f (l.set i a) = (mapIdx f l).set i (f i a)
          @[simp]
          theorem List.head_mapIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} {w : mapIdx f l []} :
          (mapIdx f l).head w = f 0 (l.head )
          @[simp]
          theorem List.head?_mapIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} :
          (mapIdx f l).head? = Option.map (f 0) l.head?
          @[simp]
          theorem List.getLast_mapIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} {h : mapIdx f l []} :
          (mapIdx f l).getLast h = f (l.length - 1) (l.getLast )
          @[simp]
          theorem List.getLast?_mapIdx {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} :
          (mapIdx f l).getLast? = Option.map (f (l.length - 1)) l.getLast?
          @[simp]
          theorem List.mapIdx_mapIdx {α : Type u_1} {β : Type u_2} {γ : Type u_3} {l : List α} {f : Natαβ} {g : Natβγ} :
          mapIdx g (mapIdx f l) = mapIdx (fun (i : Nat) => g i f i) l
          theorem List.mapIdx_eq_replicate_iff {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} {b : β} :
          mapIdx f l = replicate l.length b ∀ (i : Nat) (h : i < l.length), f i l[i] = b
          @[simp]
          theorem List.mapIdx_reverse {α : Type u_1} {β : Type u_2} {l : List α} {f : Natαβ} :
          mapIdx f l.reverse = (mapIdx (fun (i : Nat) => f (l.length - 1 - i)) l).reverse