Documentation

Init.Data.Nat.Basic

@[reducible, inline]
abbrev Nat.recAux {motive : NatSort u} (zero : motive 0) (succ : (n : Nat) → motive nmotive (n + 1)) (t : Nat) :
motive t

Recursor identical to Nat.rec but uses notations 0 for Nat.zero and · + 1 for Nat.succ. Used as the default Nat eliminator by the induction tactic.

Equations
Instances For
    @[reducible, inline]
    abbrev Nat.casesAuxOn {motive : NatSort u} (t : Nat) (zero : motive 0) (succ : (n : Nat) → motive (n + 1)) :
    motive t

    Recursor identical to Nat.casesOn but uses notations 0 for Nat.zero and · + 1 for Nat.succ. Used as the default Nat eliminator by the cases tactic.

    Equations
    Instances For
      @[specialize #[]]
      def Nat.repeat {α : Type u} (f : αα) (n : Nat) (a : α) :
      α

      Nat.repeat f n a is f^(n) a; that is, it iterates f n times on a.

      Equations
      Instances For
        @[inline]
        def Nat.repeatTR {α : Type u} (f : αα) (n : Nat) (a : α) :
        α

        Tail-recursive version of Nat.repeat.

        Equations
        Instances For
          @[specialize #[]]
          def Nat.repeatTR.loop {α : Type u} (f : αα) :
          Natαα
          Equations
          Instances For
            def Nat.blt (a b : Nat) :

            Boolean less-than of natural numbers.

            Equations
            • a.blt b = a.succ.ble b
            Instances For
              theorem Nat.and_forall_add_one {p : NatProp} :
              (p 0 ∀ (n : Nat), p (n + 1)) ∀ (n : Nat), p n
              theorem Nat.or_exists_add_one {p : NatProp} :
              (p 0 ∃ (n : Nat), p (n + 1)) Exists p

              Helper "packing" theorems #

              @[simp]
              @[simp]
              theorem Nat.add_eq {x y : Nat} :
              x.add y = x + y
              @[simp]
              theorem Nat.mul_eq {x y : Nat} :
              x.mul y = x * y
              @[simp]
              theorem Nat.sub_eq {x y : Nat} :
              x.sub y = x - y
              @[simp]
              theorem Nat.lt_eq {x y : Nat} :
              x.lt y = (x < y)
              @[simp]
              theorem Nat.le_eq {x y : Nat} :
              x.le y = (x y)

              Helper Bool relation theorems #

              @[simp]
              theorem Nat.beq_refl (a : Nat) :
              a.beq a = true
              @[simp]
              theorem Nat.beq_eq {x y : Nat} :
              (x.beq y = true) = (x = y)
              @[simp]
              theorem Nat.ble_eq {x y : Nat} :
              (x.ble y = true) = (x y)
              @[simp]
              theorem Nat.blt_eq {x y : Nat} :
              (x.blt y = true) = (x < y)
              theorem Nat.beq_eq_true_eq (a b : Nat) :
              ((a == b) = true) = (a = b)
              theorem Nat.not_beq_eq_true_eq (a b : Nat) :
              ((!a == b) = true) = ¬a = b

              Nat.add theorems #

              @[simp]
              theorem Nat.zero_add (n : Nat) :
              0 + n = n
              instance Nat.instLawfulIdentityHAddOfNat :
              Std.LawfulIdentity (fun (x1 x2 : Nat) => x1 + x2) 0
              theorem Nat.succ_add (n m : Nat) :
              n.succ + m = (n + m).succ
              theorem Nat.add_succ (n m : Nat) :
              n + m.succ = (n + m).succ
              theorem Nat.add_one (n : Nat) :
              n + 1 = n.succ
              @[simp]
              theorem Nat.succ_eq_add_one (n : Nat) :
              n.succ = n + 1
              @[simp]
              theorem Nat.add_one_ne_zero (n : Nat) :
              n + 1 0
              theorem Nat.zero_ne_add_one (n : Nat) :
              0 n + 1
              theorem Nat.add_comm (n m : Nat) :
              n + m = m + n
              instance Nat.instCommutativeHAdd :
              Std.Commutative fun (x1 x2 : Nat) => x1 + x2
              theorem Nat.add_assoc (n m k : Nat) :
              n + m + k = n + (m + k)
              instance Nat.instAssociativeHAdd :
              Std.Associative fun (x1 x2 : Nat) => x1 + x2
              theorem Nat.add_left_comm (n m k : Nat) :
              n + (m + k) = m + (n + k)
              theorem Nat.add_right_comm (n m k : Nat) :
              n + m + k = n + k + m
              theorem Nat.add_left_cancel {n m k : Nat} :
              n + m = n + km = k
              theorem Nat.add_right_cancel {n m k : Nat} (h : n + m = k + m) :
              n = k
              theorem Nat.eq_zero_of_add_eq_zero {n m : Nat} :
              n + m = 0n = 0 m = 0
              theorem Nat.eq_zero_of_add_eq_zero_left {n m : Nat} (h : n + m = 0) :
              m = 0

              Nat.mul theorems #

              @[simp]
              theorem Nat.mul_zero (n : Nat) :
              n * 0 = 0
              theorem Nat.mul_succ (n m : Nat) :
              n * m.succ = n * m + n
              theorem Nat.mul_add_one (n m : Nat) :
              n * (m + 1) = n * m + n
              @[simp]
              theorem Nat.zero_mul (n : Nat) :
              0 * n = 0
              theorem Nat.succ_mul (n m : Nat) :
              n.succ * m = n * m + m
              theorem Nat.add_one_mul (n m : Nat) :
              (n + 1) * m = n * m + m
              theorem Nat.mul_comm (n m : Nat) :
              n * m = m * n
              instance Nat.instCommutativeHMul :
              Std.Commutative fun (x1 x2 : Nat) => x1 * x2
              @[simp]
              theorem Nat.mul_one (n : Nat) :
              n * 1 = n
              @[simp]
              theorem Nat.one_mul (n : Nat) :
              1 * n = n
              instance Nat.instLawfulIdentityHMulOfNat :
              Std.LawfulIdentity (fun (x1 x2 : Nat) => x1 * x2) 1
              theorem Nat.left_distrib (n m k : Nat) :
              n * (m + k) = n * m + n * k
              theorem Nat.right_distrib (n m k : Nat) :
              (n + m) * k = n * k + m * k
              theorem Nat.mul_add (n m k : Nat) :
              n * (m + k) = n * m + n * k
              theorem Nat.add_mul (n m k : Nat) :
              (n + m) * k = n * k + m * k
              theorem Nat.mul_assoc (n m k : Nat) :
              n * m * k = n * (m * k)
              instance Nat.instAssociativeHMul :
              Std.Associative fun (x1 x2 : Nat) => x1 * x2
              theorem Nat.mul_left_comm (n m k : Nat) :
              n * (m * k) = m * (n * k)
              theorem Nat.mul_two (n : Nat) :
              n * 2 = n + n
              theorem Nat.two_mul (n : Nat) :
              2 * n = n + n

              Inequalities #

              theorem Nat.succ_lt_succ {n m : Nat} :
              n < mn.succ < m.succ
              theorem Nat.lt_succ_of_le {n m : Nat} :
              n mn < m.succ
              theorem Nat.le_of_lt_add_one {n m : Nat} :
              n < m + 1n m
              theorem Nat.lt_add_one_of_le {n m : Nat} :
              n mn < m + 1
              @[simp]
              theorem Nat.sub_zero (n : Nat) :
              n - 0 = n
              theorem Nat.add_one_pos (n : Nat) :
              0 < n + 1
              theorem Nat.succ_sub_succ_eq_sub (n m : Nat) :
              n.succ - m.succ = n - m
              theorem Nat.pred_le (n : Nat) :
              n.pred n
              theorem Nat.pred_lt {n : Nat} :
              n 0n.pred < n
              theorem Nat.sub_one_lt {n : Nat} :
              n 0n - 1 < n
              @[simp]
              theorem Nat.sub_le (n m : Nat) :
              n - m n
              theorem Nat.sub_lt {n m : Nat} :
              0 < n0 < mn - m < n
              theorem Nat.sub_succ (n m : Nat) :
              n - m.succ = (n - m).pred
              theorem Nat.succ_sub_succ (n m : Nat) :
              n.succ - m.succ = n - m
              @[simp]
              theorem Nat.sub_self (n : Nat) :
              n - n = 0
              theorem Nat.sub_add_eq (a b c : Nat) :
              a - (b + c) = a - b - c
              theorem Nat.lt_of_lt_of_le {n m k : Nat} :
              n < mm kn < k
              theorem Nat.lt_of_lt_of_eq {n m k : Nat} :
              n < mm = kn < k
              instance Nat.instTransLt :
              Trans (fun (x1 x2 : Nat) => x1 < x2) (fun (x1 x2 : Nat) => x1 < x2) fun (x1 x2 : Nat) => x1 < x2
              Equations
              instance Nat.instTransLe :
              Trans (fun (x1 x2 : Nat) => x1 x2) (fun (x1 x2 : Nat) => x1 x2) fun (x1 x2 : Nat) => x1 x2
              Equations
              instance Nat.instTransLtLe :
              Trans (fun (x1 x2 : Nat) => x1 < x2) (fun (x1 x2 : Nat) => x1 x2) fun (x1 x2 : Nat) => x1 < x2
              Equations
              instance Nat.instTransLeLt :
              Trans (fun (x1 x2 : Nat) => x1 x2) (fun (x1 x2 : Nat) => x1 < x2) fun (x1 x2 : Nat) => x1 < x2
              Equations
              theorem Nat.le_of_eq {n m : Nat} (p : n = m) :
              n m
              theorem Nat.lt.step {n m : Nat} :
              n < mn < m.succ
              theorem Nat.le_of_succ_le {n m : Nat} (h : n.succ m) :
              n m
              theorem Nat.lt_of_succ_lt {n m : Nat} :
              n.succ < mn < m
              theorem Nat.le_of_lt {n m : Nat} :
              n < mn m
              theorem Nat.lt_of_succ_lt_succ {n m : Nat} :
              n.succ < m.succn < m
              theorem Nat.lt_of_succ_le {n m : Nat} (h : n.succ m) :
              n < m
              theorem Nat.succ_le_of_lt {n m : Nat} (h : n < m) :
              n.succ m
              theorem Nat.eq_zero_or_pos (n : Nat) :
              n = 0 n > 0
              theorem Nat.pos_of_ne_zero {n : Nat} :
              n 00 < n
              theorem Nat.pos_of_neZero (n : Nat) [NeZero n] :
              0 < n
              theorem Nat.lt.base (n : Nat) :
              n < n.succ
              theorem Nat.lt_succ_self (n : Nat) :
              n < n.succ
              @[simp]
              theorem Nat.lt_add_one (n : Nat) :
              n < n + 1
              theorem Nat.le_total (m n : Nat) :
              m n n m
              theorem Nat.eq_zero_of_le_zero {n : Nat} (h : n 0) :
              n = 0
              theorem Nat.zero_lt_of_lt {a b : Nat} :
              a < b0 < b
              theorem Nat.zero_lt_of_ne_zero {a : Nat} (h : a 0) :
              0 < a
              theorem Nat.ne_of_lt {a b : Nat} (h : a < b) :
              a b
              theorem Nat.le_or_eq_of_le_succ {m n : Nat} (h : m n.succ) :
              m n m = n.succ
              theorem Nat.le_or_eq_of_le_add_one {m n : Nat} (h : m n + 1) :
              m n m = n + 1
              @[simp]
              theorem Nat.le_add_right (n k : Nat) :
              n n + k
              @[simp]
              theorem Nat.le_add_left (n m : Nat) :
              n m + n
              theorem Nat.le_of_add_right_le {n m k : Nat} (h : n + k m) :
              n m
              theorem Nat.le_add_right_of_le {n m k : Nat} (h : n m) :
              n m + k
              theorem Nat.lt_of_add_one_le {n m : Nat} (h : n + 1 m) :
              n < m
              theorem Nat.add_one_le_of_lt {n m : Nat} (h : n < m) :
              n + 1 m
              theorem Nat.lt_add_left {a b : Nat} (c : Nat) (h : a < b) :
              a < c + b
              theorem Nat.lt_add_right {a b : Nat} (c : Nat) (h : a < b) :
              a < b + c
              theorem Nat.lt_of_add_right_lt {n m k : Nat} (h : n + k < m) :
              n < m
              theorem Nat.le.dest {n m : Nat} :
              n m∃ (k : Nat), n + k = m
              theorem Nat.le.intro {n m k : Nat} (h : n + k = m) :
              n m
              theorem Nat.not_le_of_gt {n m : Nat} (h : n > m) :
              ¬n m
              theorem Nat.not_le_of_lt {a b : Nat} :
              a < b¬b a
              theorem Nat.not_lt_of_ge {a b : Nat} :
              b a¬b < a
              theorem Nat.not_lt_of_le {a b : Nat} :
              a b¬b < a
              theorem Nat.lt_le_asymm {a b : Nat} :
              a < b¬b a
              theorem Nat.le_lt_asymm {a b : Nat} :
              a b¬b < a
              theorem Nat.gt_of_not_le {n m : Nat} (h : ¬n m) :
              n > m
              theorem Nat.lt_of_not_ge {a b : Nat} :
              ¬b ab < a
              theorem Nat.lt_of_not_le {a b : Nat} :
              ¬a bb < a
              theorem Nat.ge_of_not_lt {n m : Nat} (h : ¬n < m) :
              n m
              theorem Nat.le_of_not_gt {a b : Nat} :
              ¬b > ab a
              theorem Nat.le_of_not_lt {a b : Nat} :
              ¬a < bb a
              theorem Nat.ne_of_gt {a b : Nat} (h : b < a) :
              a b
              theorem Nat.ne_of_lt' {a b : Nat} :
              a < bb a
              @[simp]
              theorem Nat.not_le {a b : Nat} :
              ¬a b b < a
              @[simp]
              theorem Nat.not_lt {a b : Nat} :
              ¬a < b b a
              theorem Nat.le_of_not_le {a b : Nat} (h : ¬b a) :
              a b
              theorem Nat.le_of_not_ge {a b : Nat} :
              ¬a ba b
              theorem Nat.lt_trichotomy (a b : Nat) :
              a < b a = b b < a
              theorem Nat.lt_or_gt_of_ne {a b : Nat} (ne : a b) :
              a < b a > b
              theorem Nat.lt_or_lt_of_ne {a b : Nat} :
              a ba < b b < a
              theorem Nat.le_antisymm_iff {a b : Nat} :
              a = b a b b a
              theorem Nat.eq_iff_le_and_ge {a b : Nat} :
              a = b a b b a
              instance Nat.instAntisymmLe :
              Std.Antisymm fun (x1 x2 : Nat) => x1 x2
              instance Nat.instAntisymmNotLt :
              Std.Antisymm fun (x1 x2 : Nat) => ¬x1 < x2
              theorem Nat.add_le_add_left {n m : Nat} (h : n m) (k : Nat) :
              k + n k + m
              theorem Nat.add_le_add_right {n m : Nat} (h : n m) (k : Nat) :
              n + k m + k
              theorem Nat.add_lt_add_left {n m : Nat} (h : n < m) (k : Nat) :
              k + n < k + m
              theorem Nat.add_lt_add_right {n m : Nat} (h : n < m) (k : Nat) :
              n + k < m + k
              theorem Nat.lt_add_of_pos_left {k n : Nat} (h : 0 < k) :
              n < k + n
              theorem Nat.lt_add_of_pos_right {k n : Nat} (h : 0 < k) :
              n < n + k
              theorem Nat.pos_iff_ne_zero {n : Nat} :
              0 < n n 0
              theorem Nat.add_le_add {a b c d : Nat} (h₁ : a b) (h₂ : c d) :
              a + c b + d
              theorem Nat.add_lt_add {a b c d : Nat} (h₁ : a < b) (h₂ : c < d) :
              a + c < b + d
              theorem Nat.le_of_add_le_add_left {a b c : Nat} (h : a + b a + c) :
              b c
              theorem Nat.le_of_add_le_add_right {a b c : Nat} :
              a + b c + ba c
              @[simp]
              theorem Nat.add_le_add_iff_right {m k n : Nat} :
              m + n k + n m k

              le/lt #

              theorem Nat.lt_asymm {a b : Nat} (h : a < b) :
              ¬b < a
              @[reducible, inline]
              abbrev Nat.not_lt_of_gt {a b : Nat} (h : a < b) :
              ¬b < a

              Alias for Nat.lt_asymm.

              Equations
              Instances For
                @[reducible, inline]
                abbrev Nat.not_lt_of_lt {a b : Nat} (h : a < b) :
                ¬b < a

                Alias for Nat.lt_asymm.

                Equations
                Instances For
                  theorem Nat.lt_iff_le_not_le {m n : Nat} :
                  m < n m n ¬n m
                  @[reducible, inline]
                  abbrev Nat.lt_iff_le_and_not_ge {m n : Nat} :
                  m < n m n ¬n m

                  Alias for Nat.lt_iff_le_not_le.

                  Equations
                  Instances For
                    theorem Nat.lt_iff_le_and_ne {m n : Nat} :
                    m < n m n m n
                    theorem Nat.ne_iff_lt_or_gt {a b : Nat} :
                    a b a < b b < a
                    @[reducible, inline]
                    abbrev Nat.lt_or_gt {a b : Nat} :
                    a b a < b b < a

                    Alias for Nat.ne_iff_lt_or_gt.

                    Equations
                    Instances For
                      @[reducible, inline]
                      abbrev Nat.le_or_ge (m n : Nat) :
                      m n n m

                      Alias for Nat.le_total.

                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev Nat.le_or_le (m n : Nat) :
                        m n n m

                        Alias for Nat.le_total.

                        Equations
                        Instances For
                          theorem Nat.eq_or_lt_of_not_lt {a b : Nat} (hnlt : ¬a < b) :
                          a = b b < a
                          theorem Nat.lt_or_eq_of_le {n m : Nat} (h : n m) :
                          n < m n = m
                          theorem Nat.le_iff_lt_or_eq {n m : Nat} :
                          n m n < m n = m
                          theorem Nat.lt_succ_iff {m n : Nat} :
                          m < n.succ m n
                          theorem Nat.lt_add_one_iff {m n : Nat} :
                          m < n + 1 m n
                          theorem Nat.lt_succ_iff_lt_or_eq {m n : Nat} :
                          m < n.succ m < n m = n
                          theorem Nat.lt_add_one_iff_lt_or_eq {m n : Nat} :
                          m < n + 1 m < n m = n
                          theorem Nat.eq_of_lt_succ_of_not_lt {m n : Nat} (hmn : m < n + 1) (h : ¬m < n) :
                          m = n
                          theorem Nat.eq_of_le_of_lt_succ {n m : Nat} (h₁ : n m) (h₂ : m < n + 1) :
                          m = n

                          zero/one/two #

                          theorem Nat.le_zero {i : Nat} :
                          i 0 i = 0
                          @[reducible, inline]
                          abbrev Nat.one_pos :
                          0 < 1

                          Alias for Nat.zero_lt_one.

                          Equations
                          Instances For
                            theorem Nat.two_pos :
                            0 < 2
                            theorem Nat.ne_zero_iff_zero_lt {n : Nat} :
                            n 0 0 < n
                            theorem Nat.one_lt_two :
                            1 < 2
                            theorem Nat.eq_zero_of_not_pos {n : Nat} (h : ¬0 < n) :
                            n = 0

                            succ/pred #

                            theorem Nat.succ_ne_self (n : Nat) :
                            n.succ n
                            theorem Nat.add_one_ne_self (n : Nat) :
                            n + 1 n
                            theorem Nat.succ_le {n m : Nat} :
                            n.succ m n < m
                            theorem Nat.add_one_le_iff {n m : Nat} :
                            n + 1 m n < m
                            theorem Nat.lt_succ {m n : Nat} :
                            m < n.succ m n
                            theorem Nat.lt_succ_of_lt {a b : Nat} (h : a < b) :
                            a < b.succ
                            theorem Nat.lt_add_one_of_lt {a b : Nat} (h : a < b) :
                            a < b + 1
                            @[simp]
                            theorem Nat.lt_one_iff {n : Nat} :
                            n < 1 n = 0
                            theorem Nat.succ_pred_eq_of_ne_zero {n : Nat} :
                            n 0n.pred.succ = n
                            theorem Nat.eq_zero_or_eq_succ_pred (n : Nat) :
                            n = 0 n = n.pred.succ
                            theorem Nat.succ_inj' {a b : Nat} :
                            a.succ = b.succ a = b
                            theorem Nat.succ_le_succ_iff {a b : Nat} :
                            a.succ b.succ a b
                            theorem Nat.succ_lt_succ_iff {a b : Nat} :
                            a.succ < b.succ a < b
                            theorem Nat.add_one_inj {a b : Nat} :
                            a + 1 = b + 1 a = b
                            theorem Nat.ne_add_one (n : Nat) :
                            n n + 1
                            theorem Nat.add_one_ne (n : Nat) :
                            n + 1 n
                            theorem Nat.add_one_le_add_one_iff {a b : Nat} :
                            a + 1 b + 1 a b
                            theorem Nat.add_one_lt_add_one_iff {a b : Nat} :
                            a + 1 < b + 1 a < b
                            theorem Nat.pred_inj {a b : Nat} :
                            0 < a0 < ba.pred = b.preda = b
                            theorem Nat.pred_ne_self {a : Nat} :
                            a 0a.pred a
                            theorem Nat.sub_one_ne_self {a : Nat} :
                            a 0a - 1 a
                            theorem Nat.pred_lt_self {a : Nat} :
                            0 < aa.pred < a
                            theorem Nat.pred_lt_pred {n m : Nat} :
                            n 0n < mn.pred < m.pred
                            theorem Nat.pred_le_iff_le_succ {n : Nat} {m : Nat} :
                            n.pred m n m.succ
                            theorem Nat.le_succ_of_pred_le {n : Nat} {m : Nat} :
                            n.pred mn m.succ
                            theorem Nat.pred_le_of_le_succ {n m : Nat} :
                            n m.succn.pred m
                            theorem Nat.lt_pred_iff_succ_lt {n : Nat} {m : Nat} :
                            n < m.pred n.succ < m
                            theorem Nat.succ_lt_of_lt_pred {n : Nat} {m : Nat} :
                            n < m.predn.succ < m
                            theorem Nat.lt_pred_of_succ_lt {n m : Nat} :
                            n.succ < mn < m.pred
                            theorem Nat.le_pred_iff_lt {n : Nat} {m : Nat} :
                            0 < m(n m.pred n < m)
                            theorem Nat.le_pred_of_lt {n m : Nat} (h : n < m) :
                            n m.pred
                            theorem Nat.le_sub_one_of_lt {a b : Nat} :
                            a < ba b - 1
                            theorem Nat.lt_of_le_pred {m : Nat} {n : Nat} (h : 0 < m) :
                            n m.predn < m
                            theorem Nat.lt_of_le_sub_one {m n : Nat} (h : 0 < m) :
                            n m - 1n < m
                            theorem Nat.le_sub_one_iff_lt {m n : Nat} (h : 0 < m) :
                            n m - 1 n < m
                            theorem Nat.exists_eq_succ_of_ne_zero {n : Nat} :
                            n 0∃ (k : Nat), n = k.succ
                            theorem Nat.exists_eq_add_one_of_ne_zero {n : Nat} :
                            n 0∃ (k : Nat), n = k + 1

                            Basic theorems for comparing numerals #

                            theorem Nat.succ_ne_zero (n : Nat) :
                            n.succ 0
                            instance Nat.instNeZeroSucc {n : Nat} :
                            NeZero (n + 1)

                            mul + order #

                            theorem Nat.mul_le_mul_left {n m : Nat} (k : Nat) (h : n m) :
                            k * n k * m
                            theorem Nat.mul_le_mul_right {n m : Nat} (k : Nat) (h : n m) :
                            n * k m * k
                            theorem Nat.mul_le_mul {n₁ m₁ n₂ m₂ : Nat} (h₁ : n₁ n₂) (h₂ : m₁ m₂) :
                            n₁ * m₁ n₂ * m₂
                            theorem Nat.mul_lt_mul_of_pos_left {n m k : Nat} (h : n < m) (hk : k > 0) :
                            k * n < k * m
                            theorem Nat.mul_lt_mul_of_pos_right {n m k : Nat} (h : n < m) (hk : k > 0) :
                            n * k < m * k
                            theorem Nat.mul_pos {n m : Nat} (ha : n > 0) (hb : m > 0) :
                            n * m > 0
                            theorem Nat.le_of_mul_le_mul_left {a b c : Nat} (h : c * a c * b) (hc : 0 < c) :
                            a b
                            theorem Nat.eq_of_mul_eq_mul_left {m k n : Nat} (hn : 0 < n) (h : n * m = n * k) :
                            m = k
                            theorem Nat.eq_of_mul_eq_mul_right {n m k : Nat} (hm : 0 < m) (h : n * m = k * m) :
                            n = k

                            power #

                            theorem Nat.pow_succ (n m : Nat) :
                            n ^ m.succ = n ^ m * n
                            theorem Nat.pow_add_one (n m : Nat) :
                            n ^ (m + 1) = n ^ m * n
                            @[simp]
                            theorem Nat.pow_zero (n : Nat) :
                            n ^ 0 = 1
                            theorem Nat.pow_le_pow_of_le_left {n m : Nat} (h : n m) (i : Nat) :
                            n ^ i m ^ i
                            theorem Nat.pow_le_pow_of_le_right {n : Nat} (hx : n > 0) {i j : Nat} :
                            i jn ^ i n ^ j
                            theorem Nat.pos_pow_of_pos {n : Nat} (m : Nat) (h : 0 < n) :
                            0 < n ^ m
                            @[simp]
                            theorem Nat.zero_pow_of_pos (n : Nat) (h : 0 < n) :
                            0 ^ n = 0
                            theorem Nat.two_pow_pos (w : Nat) :
                            0 < 2 ^ w
                            instance Nat.instNeZeroHPow {n m : Nat} [NeZero n] :
                            NeZero (n ^ m)

                            min/max #

                            @[reducible, inline]
                            abbrev Nat.min (n m : Nat) :

                            Nat.min a b is the minimum of a and b:

                            Equations
                            Instances For
                              theorem Nat.min_def {n m : Nat} :
                              min n m = if n m then n else m
                              instance Nat.instMax :
                              Equations
                              @[reducible, inline]
                              abbrev Nat.max (n m : Nat) :

                              Nat.max a b is the maximum of a and b:

                              Equations
                              Instances For
                                theorem Nat.max_def {n m : Nat} :
                                max n m = if n m then m else n

                                Auxiliary theorems for well-founded recursion #

                                theorem Nat.not_eq_zero_of_lt {b a : Nat} (h : b < a) :
                                a 0
                                theorem Nat.pred_lt_of_lt {n m : Nat} (h : m < n) :
                                n.pred < n
                                @[reducible, inline, deprecated Nat.pred_lt_of_lt]
                                abbrev Nat.pred_lt' {n m : Nat} (h : m < n) :
                                n.pred < n
                                Equations
                                Instances For
                                  theorem Nat.sub_one_lt_of_lt {n m : Nat} (h : m < n) :
                                  n - 1 < n

                                  pred theorems #

                                  theorem Nat.pred_succ (n : Nat) :
                                  n.succ.pred = n
                                  @[simp]
                                  theorem Nat.zero_sub_one :
                                  0 - 1 = 0
                                  @[simp]
                                  theorem Nat.add_one_sub_one (n : Nat) :
                                  n + 1 - 1 = n
                                  theorem Nat.sub_one_eq_self {n : Nat} :
                                  n - 1 = n n = 0
                                  theorem Nat.eq_self_sub_one {n : Nat} :
                                  n = n - 1 n = 0
                                  theorem Nat.succ_pred {a : Nat} (h : a 0) :
                                  a.pred.succ = a
                                  theorem Nat.sub_one_add_one {a : Nat} (h : a 0) :
                                  a - 1 + 1 = a
                                  theorem Nat.succ_pred_eq_of_pos {n : Nat} :
                                  0 < nn.pred.succ = n
                                  theorem Nat.sub_one_add_one_eq_of_pos {n : Nat} :
                                  0 < nn - 1 + 1 = n
                                  theorem Nat.eq_zero_or_eq_sub_one_add_one {n : Nat} :
                                  n = 0 n = n - 1 + 1
                                  @[simp]
                                  theorem Nat.pred_eq_sub_one {n : Nat} :
                                  n.pred = n - 1

                                  sub theorems #

                                  theorem Nat.add_sub_self_left (a b : Nat) :
                                  a + b - a = b
                                  theorem Nat.add_sub_self_right (a b : Nat) :
                                  a + b - b = a
                                  theorem Nat.sub_le_succ_sub (a i : Nat) :
                                  a - i a.succ - i
                                  theorem Nat.zero_lt_sub_of_lt {i a : Nat} (h : i < a) :
                                  0 < a - i
                                  theorem Nat.sub_succ_lt_self (a i : Nat) (h : i < a) :
                                  a - (i + 1) < a - i
                                  theorem Nat.sub_ne_zero_of_lt {a b : Nat} :
                                  a < bb - a 0
                                  theorem Nat.add_sub_of_le {a b : Nat} (h : a b) :
                                  a + (b - a) = b
                                  theorem Nat.sub_one_cancel {a b : Nat} :
                                  0 < a0 < ba - 1 = b - 1a = b
                                  @[simp]
                                  theorem Nat.sub_add_cancel {n m : Nat} (h : m n) :
                                  n - m + m = n
                                  theorem Nat.add_sub_add_right (n k m : Nat) :
                                  n + k - (m + k) = n - m
                                  theorem Nat.add_sub_add_left (k n m : Nat) :
                                  k + n - (k + m) = n - m
                                  @[simp]
                                  theorem Nat.add_sub_cancel (n m : Nat) :
                                  n + m - m = n
                                  theorem Nat.add_sub_cancel_left (n m : Nat) :
                                  n + m - n = m
                                  theorem Nat.add_sub_assoc {m k : Nat} (h : k m) (n : Nat) :
                                  n + m - k = n + (m - k)
                                  theorem Nat.eq_add_of_sub_eq {a b c : Nat} (hle : b a) (h : a - b = c) :
                                  a = c + b
                                  theorem Nat.sub_eq_of_eq_add {a b c : Nat} (h : a = c + b) :
                                  a - b = c
                                  theorem Nat.le_add_of_sub_le {a b c : Nat} (h : a - b c) :
                                  a c + b
                                  theorem Nat.sub_lt_sub_left {k m n : Nat} :
                                  k < mk < nm - n < m - k
                                  @[simp]
                                  theorem Nat.zero_sub (n : Nat) :
                                  0 - n = 0
                                  theorem Nat.sub_lt_sub_right {a b c : Nat} :
                                  c aa < ba - c < b - c
                                  theorem Nat.sub_self_add (n m : Nat) :
                                  n - (n + m) = 0
                                  theorem Nat.sub_eq_zero_of_le {n m : Nat} (h : n m) :
                                  n - m = 0
                                  theorem Nat.sub_le_of_le_add {a b c : Nat} (h : a c + b) :
                                  a - b c
                                  theorem Nat.add_le_of_le_sub {a b c : Nat} (hle : b c) (h : a c - b) :
                                  a + b c
                                  theorem Nat.le_sub_of_add_le {a b c : Nat} (h : a + b c) :
                                  a c - b
                                  theorem Nat.add_lt_of_lt_sub {a b c : Nat} (h : a < c - b) :
                                  a + b < c
                                  theorem Nat.lt_sub_of_add_lt {a b c : Nat} (h : a + b < c) :
                                  a < c - b
                                  theorem Nat.sub.elim {motive : NatProp} (x y : Nat) (h₁ : y x∀ (k : Nat), x = y + kmotive k) (h₂ : x < ymotive 0) :
                                  motive (x - y)
                                  theorem Nat.succ_sub {m n : Nat} (h : n m) :
                                  m.succ - n = (m - n).succ
                                  theorem Nat.sub_pos_of_lt {m n : Nat} (h : m < n) :
                                  0 < n - m
                                  theorem Nat.sub_sub (n m k : Nat) :
                                  n - m - k = n - (m + k)
                                  theorem Nat.sub_le_sub_left {n m : Nat} (h : n m) (k : Nat) :
                                  k - m k - n
                                  theorem Nat.sub_le_sub_right {n m : Nat} (h : n m) (k : Nat) :
                                  n - k m - k
                                  theorem Nat.sub_le_add_right_sub (a i j : Nat) :
                                  a - i a + j - i
                                  theorem Nat.lt_of_sub_ne_zero {n m : Nat} (h : n - m 0) :
                                  m < n
                                  theorem Nat.sub_ne_zero_iff_lt {n m : Nat} :
                                  n - m 0 m < n
                                  theorem Nat.lt_of_sub_pos {n m : Nat} (h : 0 < n - m) :
                                  m < n
                                  theorem Nat.lt_of_sub_eq_succ {m n l : Nat} (h : m - n = l.succ) :
                                  n < m
                                  theorem Nat.lt_of_sub_eq_sub_one {m n l : Nat} (h : m - n = l + 1) :
                                  n < m
                                  theorem Nat.sub_lt_left_of_lt_add {n k m : Nat} (H : n k) (h : k < n + m) :
                                  k - n < m
                                  theorem Nat.sub_lt_right_of_lt_add {n k m : Nat} (H : n k) (h : k < m + n) :
                                  k - n < m
                                  theorem Nat.le_of_sub_eq_zero {n m : Nat} :
                                  n - m = 0n m
                                  theorem Nat.le_of_sub_le_sub_right {n m k : Nat} :
                                  k mn - k m - kn m
                                  theorem Nat.sub_le_sub_iff_right {k m n : Nat} (h : k m) :
                                  n - k m - k n m
                                  theorem Nat.sub_eq_iff_eq_add {b a c : Nat} (h : b a) :
                                  a - b = c a = c + b
                                  theorem Nat.sub_eq_iff_eq_add' {b a c : Nat} (h : b a) :
                                  a - b = c a = b + c
                                  theorem Nat.sub_one_sub_lt_of_lt {a b : Nat} (h : a < b) :
                                  b - 1 - a < b

                                  Mul sub distrib #

                                  theorem Nat.pred_mul (n m : Nat) :
                                  n.pred * m = n * m - m
                                  @[reducible, inline, deprecated Nat.pred_mul]
                                  abbrev Nat.mul_pred_left (n m : Nat) :
                                  n.pred * m = n * m - m
                                  Equations
                                  Instances For
                                    theorem Nat.sub_one_mul (n m : Nat) :
                                    (n - 1) * m = n * m - m
                                    theorem Nat.mul_pred (n m : Nat) :
                                    n * m.pred = n * m - n
                                    @[reducible, inline, deprecated Nat.mul_pred]
                                    abbrev Nat.mul_pred_right (n m : Nat) :
                                    n * m.pred = n * m - n
                                    Equations
                                    Instances For
                                      theorem Nat.mul_sub_one (n m : Nat) :
                                      n * (m - 1) = n * m - n
                                      theorem Nat.mul_sub_right_distrib (n m k : Nat) :
                                      (n - m) * k = n * k - m * k
                                      theorem Nat.mul_sub_left_distrib (n m k : Nat) :
                                      n * (m - k) = n * m - n * k

                                      Helper normalization theorems #

                                      theorem Nat.not_le_eq (a b : Nat) :
                                      (¬a b) = (b + 1 a)
                                      theorem Nat.not_ge_eq (a b : Nat) :
                                      (¬a b) = (a + 1 b)
                                      theorem Nat.not_lt_eq (a b : Nat) :
                                      (¬a < b) = (b a)
                                      theorem Nat.not_gt_eq (a b : Nat) :
                                      (¬a > b) = (a b)
                                      theorem Nat.repeat_eq_repeatTR.go (α : Type u_1) (f : αα) (init : α) (m n : Nat) :
                                      Nat.repeatTR.loop f m (Nat.repeat f n init) = Nat.repeat f (m + n) init