Documentation

Init.Data.Slice.List.Lemmas

@[simp]
@[simp]
theorem List.toList_mkSlice_rco {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.toArray_mkSlice_rco {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.size_mkSlice_rco {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.mkSlice_rcc_eq_mkSlice_rco {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.toList_mkSlice_rcc {α : Type u_1} {xs : List α} {lo hi : Nat} :
Std.Slice.toList (Std.Rcc.Sliceable.mkSlice xs lo...=hi) = drop lo (take (hi + 1) xs)
@[simp]
theorem List.toArray_mkSlice_rcc {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.size_mkSlice_rcc {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.toList_mkSlice_rci {α : Type u_1} {xs : List α} {lo : Nat} :
@[simp]
theorem List.toArray_mkSlice_rci {α : Type u_1} {xs : List α} {lo : Nat} :
@[simp]
theorem List.size_mkSlice_rci {α : Type u_1} {xs : List α} {lo : Nat} :
@[simp]
theorem List.mkSlice_roo_eq_mkSlice_rco {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.toList_mkSlice_roo {α : Type u_1} {xs : List α} {lo hi : Nat} :
Std.Slice.toList (Std.Roo.Sliceable.mkSlice xs lo<...hi) = drop (lo + 1) (take hi xs)
@[simp]
theorem List.toArray_mkSlice_roo {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.size_mkSlice_roo {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.mkSlice_roc_eq_mkSlice_roo {α : Type u_1} {xs : List α} {lo hi : Nat} :
@[simp]
theorem List.toList_mkSlice_roc {α : Type u_1} {xs : List α} {lo hi : Nat} :
Std.Slice.toList (Std.Roc.Sliceable.mkSlice xs lo<...=hi) = drop (lo + 1) (take (hi + 1) xs)
@[simp]
theorem List.toArray_mkSlice_roc {α : Type u_1} {xs : List α} {lo hi : Nat} :
Std.Slice.toArray (Std.Roc.Sliceable.mkSlice xs lo<...=hi) = (drop (lo + 1) (take (hi + 1) xs)).toArray
@[simp]
theorem List.size_mkSlice_roc {α : Type u_1} {xs : List α} {lo hi : Nat} :
Std.Slice.size (Std.Roc.Sliceable.mkSlice xs lo<...=hi) = min (hi + 1) xs.length - (lo + 1)
@[simp]
theorem List.mkSlice_roi_eq_mkSlice_rci {α : Type u_1} {xs : List α} {lo : Nat} :
@[simp]
theorem List.toList_mkSlice_roi {α : Type u_1} {xs : List α} {lo : Nat} :
@[simp]
theorem List.toArray_mkSlice_roi {α : Type u_1} {xs : List α} {lo : Nat} :
@[simp]
theorem List.size_mkSlice_roi {α : Type u_1} {xs : List α} {lo : Nat} :
@[simp]
theorem List.mkSlice_rio_eq_mkSlice_rco {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.toList_mkSlice_rio {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.toArray_mkSlice_rio {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.size_mkSlice_rio {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.mkSlice_ric_eq_mkSlice_rio {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.toList_mkSlice_ric {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.toArray_mkSlice_ric {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.size_mkSlice_ric {α : Type u_1} {xs : List α} {hi : Nat} :
@[simp]
theorem List.toList_mkSlice_rii {α : Type u_1} {xs : List α} :
@[simp]
theorem List.size_mkSlice_rii {α : Type u_1} {xs : List α} :
@[simp]
@[simp]
theorem ListSlice.mkSlice_rcc_eq_mkSlice_rco {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.toList_mkSlice_rcc {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.toArray_mkSlice_rcc {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.mkSlice_roo_eq_mkSlice_rco {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.toList_mkSlice_roo {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.toArray_mkSlice_roo {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.mkSlice_roc_eq_mkSlice_roo {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.mkSlice_roc_eq_mkSlice_rcc {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.toList_mkSlice_roc {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
theorem ListSlice.toArray_mkSlice_roc {α : Type u_1} {xs : ListSlice α} {lo hi : Nat} :
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem ListSlice.mkSlice_rii {α : Type u_1} {xs : ListSlice α} :