Documentation

Init.Data.String.Lemmas.IsEmpty

theorem String.Slice.isEmpty_iff_forall_eq {s : Slice} :
s.isEmpty = true ∀ (p q : s.Pos), p = q
@[simp]
@[simp]
@[simp]
theorem String.isEmpty_iff {s : String} :
s.isEmpty = true s = ""
theorem String.eq_empty_iff_forall_eq {s : String} :
s = "" ∀ (p q : s.Pos), p = q
theorem String.ne_empty_of_lt {s : String} {p q : s.Pos} :
p < qs ""
@[simp]
@[simp]
theorem String.isEmpty_sliceTo {s : String} {p : s.Pos} :
@[simp]
theorem String.isEmpty_slice {s : String} {p₁ p₂ : s.Pos} {h : p₁ p₂} :
(s.slice p₁ p₂ h).isEmpty = true p₁ = p₂
@[simp]
theorem String.isEmpty_slice_eq_false_iff {s : String} {p₁ p₂ : s.Pos} {h : p₁ p₂} :
(s.slice p₁ p₂ h).isEmpty = false p₁ p₂
@[simp]
theorem String.Slice.isEmpty_slice {s : Slice} {p₁ p₂ : s.Pos} {h : p₁ p₂} :
(s.slice p₁ p₂ h).isEmpty = true p₁ = p₂
@[simp]
theorem String.Slice.isEmpty_slice_eq_false_iff {s : Slice} {p₁ p₂ : s.Pos} {h : p₁ p₂} :
(s.slice p₁ p₂ h).isEmpty = false p₁ p₂
@[simp]
theorem String.length_eq_zero_iff {s : String} :
s.length = 0 s = ""