Documentation
Init
.
Data
.
Vector
.
OfFn
Search
return to top
source
Imports
Init.Data.Array.OfFn
Init.Data.Vector.Lemmas
Imported by
Vector
.
getElem_ofFn
Vector
.
getElem?_ofFn
Vector
.
mem_ofFn
Vector
.
back_ofFn
Theorems about
Vector.ofFn
#
source
@[simp]
theorem
Vector
.
getElem_ofFn
{α :
Type
u_1}
{n :
Nat
}
(f :
Fin
n
→
α
)
(i :
Nat
)
(h :
i
<
n
)
:
(
ofFn
f
)
[
i
]
=
f
⟨
i
,
h
⟩
source
theorem
Vector
.
getElem?_ofFn
{n :
Nat
}
{α :
Type
u_1}
(f :
Fin
n
→
α
)
(i :
Nat
)
:
(
ofFn
f
)
[
i
]
?
=
if h :
i
<
n
then
some
(
f
⟨
i
,
h
⟩
)
else
none
source
@[simp]
theorem
Vector
.
mem_ofFn
{α :
Type
u_1}
{n :
Nat
}
(f :
Fin
n
→
α
)
(a :
α
)
:
a
∈
ofFn
f
↔
∃
(
i
:
Fin
n
)
,
f
i
=
a
source
theorem
Vector
.
back_ofFn
{α :
Type
u_1}
{n :
Nat
}
[
NeZero
n
]
(f :
Fin
n
→
α
)
:
(
ofFn
f
)
.
back
=
f
⟨
n
-
1
,
⋯
⟩