Products of subalgebras #
In this file we define the product of two subalgebras as a subalgebra of the product algebra.
Main definitions #
Subalgebra.prod
: the product of two subalgebras.
def
Subalgebra.prod
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Semiring B]
[Algebra R B]
(S : Subalgebra R A)
(S₁ : Subalgebra R B)
:
Subalgebra R (A × B)
The product of two subalgebras is a subalgebra.
Equations
Instances For
@[simp]
theorem
Subalgebra.coe_prod
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Semiring B]
[Algebra R B]
(S : Subalgebra R A)
(S₁ : Subalgebra R B)
:
theorem
Subalgebra.prod_toSubmodule
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Semiring B]
[Algebra R B]
(S : Subalgebra R A)
(S₁ : Subalgebra R B)
:
toSubmodule (S.prod S₁) = (toSubmodule S).prod (toSubmodule S₁)
@[simp]
theorem
Subalgebra.mem_prod
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Semiring B]
[Algebra R B]
{S : Subalgebra R A}
{S₁ : Subalgebra R B}
{x : A × B}
:
theorem
Subalgebra.prod_mono
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Semiring B]
[Algebra R B]
{S T : Subalgebra R A}
{S₁ T₁ : Subalgebra R B}
:
@[simp]
theorem
Subalgebra.prod_inf_prod
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Semiring B]
[Algebra R B]
{S T : Subalgebra R A}
{S₁ T₁ : Subalgebra R B}
: