Documentation

Mathlib.Algebra.Algebra.ZMod

The ZMod n-algebra structure on rings whose characteristic divides n #

@[reducible, inline]
abbrev ZMod.algebra' (R : Type u_1) [Ring R] {n : } (m : ) [CharP R m] (h : m n) :

The ZMod n-algebra structure on rings whose characteristic m divides n. See note [reducible non-instances].

Equations
Instances For
    @[reducible, inline]
    abbrev ZMod.algebra (R : Type u_1) [Ring R] (p : ) [CharP R p] :

    The ZMod p-algebra structure on a ring of characteristic p. This is not an instance since it creates a diamond with Algebra.id. See note [reducible non-instances].

    Equations
    Instances For
      def ZMod.algebraOfModule (n : ) (R : Type u_2) [Ring R] [Module (ZMod n) R] :

      Any ring with a ZMod p-module structure can be upgraded to a ZMod p-algebra. Not an instance because this is usually not the default way, and this will cause typeclass search loop.

      Equations
      Instances For
        theorem ZMod.algebraOfModule.proof (n : ) (R : Type u_2) [Ring R] [Module (ZMod n) R] (r : ZMod n) (x : R) :
        r 1 * x = r x x * r 1 = r x
        instance ZMod.instIsScalarTower (n : ) (R : Type u_2) (M : Type u_3) [Ring R] [AddCommGroup M] [Module (ZMod n) R] [m₁ : Module (ZMod n) M] [Module R M] :