instance
ZMod.instSubsingletonAlgebra
(R : Type u_1)
[Ring R]
(p : ℕ)
:
Subsingleton (Algebra (ZMod p) R)
@[reducible, inline]
The ZMod n-algebra structure on rings whose characteristic m divides n.
See note [reducible non-instances].
Equations
- ZMod.algebra' R m h = { smul := fun (a : ZMod n) (r : R) => a.cast * r, algebraMap := ZMod.castHom h R, commutes' := ⋯, smul_def' := ⋯ }
Instances For
@[reducible, inline]
The ZMod p-algebra structure on a ring of characteristic p. This is not an
instance since it creates a diamond with Algebra.id.
See note [reducible non-instances].
Equations
- ZMod.algebra R p = ZMod.algebra' R p ⋯
Instances For
Any ring with a ZMod p-module structure can be upgraded to a ZMod p-algebra. Not an
instance because this is usually not the default way, and this will cause typeclass search loop.
Equations
- ZMod.algebraOfModule n R = Algebra.ofModule' ⋯ ⋯
Instances For
instance
ZMod.instIsScalarTower
(n : ℕ)
(R : Type u_2)
(M : Type u_3)
[Ring R]
[AddCommGroup M]
[Module (ZMod n) R]
[m₁ : Module (ZMod n) M]
[Module R M]
:
IsScalarTower (ZMod n) R M